• Title/Summary/Keyword: Reoxygenation

Search Result 65, Processing Time 0.03 seconds

The Effect of Remifentanil Preconditioning on Injured Keratinocyte

  • Hong, Hun Pyo;Kim, Cheul Hong;Yoon, Ji Young;Kim, Yong Deok;Park, Bong Soo;Kim, Yong Ho;Yoo, Ji Uk
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.14 no.3
    • /
    • pp.157-165
    • /
    • 2014
  • Background: Incisional site of surgical operation become transient ischemic state and then occur reoxygenation due to vasodilatation by inflammatory reaction, the productive reactive oxygen species (ROS) give rise to many physiologic results. Apoptosis have major role on elimination of inflammatory cell and formation of granulation tissue in normal wound healing process. Remifentanil can prevent the inflammatory response and can suppress inducible nitric oxide synthase expression in a septic mouse model. After cardiopulmonary bypass for coronary artery surgery, remifentanil can also inhibit the release of biomarkers of myocardial damage. Here we investigated whether remifentanil pretreatment has cellular protective effect against hypoxia-reoxygenation in HaCaT human keratinocytes, if so, the role of apoptosis and autophagy on this phenomenon. Methods: The HaCaT human keratinocytes were exposed to various concentrations of remifentanil (0.01, 0.05, 0.1, 0.5 and 1 ng/ml) for 2 h before hypoxia (RPC/HR group). These cells were cultured under 1% oxygen tension for 24h at $37^{\circ}C$. After hypoxia, to simulate reoxygenation and recovery, the cells were reoxygenated for 12 h at $37^{\circ}C$. 3-MA/RPC/HR group was treated 3-methyladenine (3-MA), autophagy inhibitor for 1h before remifentanil treatment. Cell viability was measured using a quantitative colorimetric assay with thiazolyl blue tetrazoliumbromide (MTT, amresco), showing the mitochondrial activity of living cells. To investigate whether the occurrence of autophagy and apoptosis, we used fluorescence microscopy and Western blot analysis. Results: The viability against hypoxia-reoxygenation injury in remifentanil preconditioning keratinocytes were increased, and these cells were showed stimulated expression of autophagy 3-MA suppressed the induction of autophagy effectively and the protective effects on apoptosis. Atg5, Beclin-1, LC3-II and p62 were elevated in RPC/HR group. But they were decreased when autophagy was suppressed by 3-MA. Conclusions: Remifentanil preconditioning showed the protective effect in human keratinocytes, and we concluded that autophagy may take the major role in the recovery of wound from hypoxia-reoxygenation injury. We suggest that further research is needed about the cell protective effects of autophagy.

Remifentanil Protects Human Keratinocyte Through Autophagic Expression

  • Kim, Eok Nyun;Park, Chang Hoon;Woo, Mi Na;Yoon, Ji Young;Park, Bong Soo;Kim, Yong Ho;Kim, Cheul Hong
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.14 no.2
    • /
    • pp.101-106
    • /
    • 2014
  • Background: Remifentanil, an ultra-short-acting mu-opioid receptor agonist, is unique from other opioids because of its esterase-based metabolism, minimal accumulation, and very rapid onset and offset of clinical action. Remifentanil can prevent the inflammatory response and can suppress inducible nitric oxide synthase expression in a septic mouse model. However, the effects of remifentanil on human keratinocyte and autophagy have yet to be fully elucidated during hypoxia-reoxygenation. Here we investigated whether remifentanil confers protective effect against hypoxia-reoxygenation in human keratinocyte and, if so, whether autophagy mediates this effect. Methods: The human keratinocytes were cultured under 1% oxygen tension. The cells were gassed with 94% $N_2$, and 5% $CO_2$ and incubated for 24 h at $37^{\circ}C$. To determine whether the administration of affects human keratinocytes hypoxia-reoxygenation injury, cells were then exposed to various concentrations of remifentanil (0.01, 0.1, 0.5 and 1 ng/ml) for 2 h. After remifentanil treatment, to simulate reoxygenation and recovery, the cells were reoxygenated for 12 h at $37^{\circ}C$. Control group did not receive remifentanil treatment. Normoxia group did not receive hypoxia and remifentanil treatment for 36 h. 3-MA group was treated 3-methyladenine (3-MA) for 1h before remifentanil treatment. Cell viability was measured using a quantitative colorimetric assay with MTT, showing the mitochondrial activity of living cells. Cells were stained with fluorescence and analyzed with Western blot analysis to find out any relations with activation of autophagy. Results: Prominent accumulation of autophagic specific staining MDC was observed around the nuclei in RPT group HaCaT cells. Similarly, AO staining, red fluorescent spots appeared in RPT group HaCaT cells, while the Normoxia, control and 3-MA groups showed mainly green cytoplasmic fluorescence. We here examined activation of autophagy related protein under H/R-induced cells by Western blotting analysis. Atg5, Beclin-1, LC3-II (microtubule-associated protein 1 light chain 3 form II) and p62 was elevated in RPT group cells. But they were decreased when autophagy was suppressed by 3-MA (Fig. 5). Conclusions: Although the findings of this study are limited to an in vitro interpretation, we suggest that remifentanil may have a beneficial effect in the recovery of wound from hypoxia-reoxygenation injury.

EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway

  • Zhang, Chao;Wang, Deng-Feng;Zhang, Zhuang;Han, Dong;Yang, Kan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.584-590
    • /
    • 2017
  • Ginkgo biloba extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, ${\gamma}$-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

Effect of Hypoxia and Reoxygenation on Cultured Human Dermal Fetal Fibroblast (저산소 및 재산소화가 배양된 태아 섬유아세포에 미치는 영향)

  • Park, Beyoung Yun;Choi, Jong Woo;Kwark, Hyug Jun;Lee, Won Jai;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.347-356
    • /
    • 2005
  • The wound healing process in fetus is quite different form that of adult. Regeneration plays an important role and scarless wound healing is possible in early gestational fetal period. Recently, the various effects of the hypoxia and reoxygenation in the wound healing process have been investigated by many researchers. The hypoxic state is known to alter protein synthesis and gene expression of TGF-${\beta}$, VEGF. The authors hypothesize there may be differences between fetal and adult fibroblast and this difference may play a possible role in the mechanism of scarless fetal wound healing. In this study, we investigated the growth of fibroblast, the amount of collagen deposition, the amount of protein synthesis and gene expression in TGF-${\beta}$(transforming growth factor-${\beta}$), VEGF(vascular endothelial growth factor) under the various hypoxic and reoxygenation conditions. Through these processes, we tried to determine the relationships between scarless fetal wound healing and hypoxic condition. In control group, fetal and adult fibroblasts were cultured under normoxic condition. The experimental groups were allocated into four different groups. The differences in TGF-beta, VEGF under 24, 48, 72 hours were statistically investigated. Compared to adult fibroblast group, there was a statistically significant increase (p<0.01) in the rates of protein synthesis in TGF-beta and VEGF of fetal fibroblast. In this study, these results may reflect the possibility that fetal fibroblast are more susceptible to change in oxygen and has a superior rate of angiogenesis through increased VEGF expression. The possible superiority of angiogenesis in fetal fibroblast may play an important role in scarless wound healing.

Neuroprotective Effects of Acorus gramineus Soland. on Oxygen-Glucose Deprivation/Reoxygenation-Induced β-amyloid Production in SH-SY5Y Neuroblastoma Cells (허혈-재관류 유도 SH-SY5Y 모델에서 베타아밀로이드 생성에 미치는 석창포 추출물에 대한 뇌 신경보호 효과)

  • Su Young Shin;Jin-Woo Jeong;Chul Hwan Kim;Eun Jung Ahn;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.58-58
    • /
    • 2021
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (Aβ) generation and development of AD is not yet known. In this study, we investigated the protective effects of Acorus gramineus Soland. (AGS) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced A β production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with AGS significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) and elevation of levels of malondialdehyde, nitrite (NO), prostaglandin E2 (PGE2), cytokines (TNF-α, IL-1β and IL-6) and glutathione, as well as superoxide dismutase activity. AGS also reduced OGD/R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, AGS reduced OGD/R-induced Aβ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that AGS may prevent neuronal cell damage from OGD/R-induced toxicity.

  • PDF

Effect of Hypoxia-Ischemia on Striatal Monoamine Metabolism in Neonatal Rat Brains (저산소-허혈 손상이 신생 흰쥐의 뇌 선조체(Striatum) Monoamine 대사에 미치는 영향)

  • Jee, Youn Hee;Kim, Hyung Gun;Park, Woo Sung;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.789-794
    • /
    • 2003
  • Purpose : We intended to evaluate the effect of hypoxia-ischemia on extracellular striatal monoamine metabolism in neonatal rat brains by in vivo microdialysis. Methods : The right common carotid arteries of five or six-day old rats were surgically ligated, and the probes for microdialysis were inserted into the right striatum with stereotaxic instrument. After stabilization for two hours, artificial cerebrospinal fluid was infused via the probe for microdialysis and samples were collected during hypoxia-ischemia and recovery periods at 20 minute intervals. The concentrations of DA(dopamine), DOPAC(3,4-di-hydroxyphenyl acetic acid), HVA(homovanillic acid), NE(norepinephrine), and 5-HIAA(5-hydroxy indole-acetic acid) were measured by HPLC(high performance liquid chromatography) and the changes were analysed. Results : The striatal levels of dopamine metabolites such as DOPAC and HVA, were significantly decreased during hypoxia-ischemia, and increased to their basal level during reoxygenation(P<0.05). Dopamine mostly increased during hypoxia but statistically not significant(P>0.05). DOPAC showed the most remarkable decrease($23.0{\pm}4.2%$, P<0.05), during hypoxia-ischemia and increase to the basal levels during reoxygenation($120.8{\pm}54.9%$, P<0.05), and HVA showed the same pattern of changes as those of DOPAC during hypoxia-ischemia($35.3{\pm}7.6%$ of basal level, P<0.05) and reoxygenation ($105.8{\pm}32.3%$). However, the level of NE did not show significant changes during hypoxia-ischemia and reoxygenation. The levels of 5-HIAA decreased($74.9{\pm}3.1%$) and increased($118.1{\pm}7.8%$) during hypoxia-ischemia and reoxygenation, respectively(P<0.005). Conclusion : Hypoxia-ischemia had a significant influence on the metabolism of striatal monoamine in neonatal rat brains. These findings suggest that monoamine, especially dopamine, and its metabolites could have a significant role in the pathogenesis of hypoxic-ischemic injury of neonatal rat brains.

NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts

  • Thu, Vu Thi;Kim, Hyoung Kyu;Long, Le Thanh;Thuy, To Thanh;Huy, Nguyen Quang;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2016
  • Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating inflammation and fibrosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 ($10{\mu}mol/L$) treatment as experimental models. Addition of NecroX-5 significantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 ($TGF{\beta}1$) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, significantly increased production of tumor necrosis factor alpha ($TNF{\alpha}$), $TGF{\beta}1$, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of $TNF{\alpha}$, $TGF{\beta}1$, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the $TNF{\alpha}/Dcn/TGF{\beta}1/Smad2$ pathway.

NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

  • Vu, Thi Thu;Kim, Hyoung Kyu;Le, Thanh Long;Nyamaa, Bayalagmaa;Song, In-Sung;To, Thanh Thuy;Nguyen, Quang Huy;Marquez, Jubert;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.201-211
    • /
    • 2016
  • Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment ($10{\mu}M$) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ ($PGC1{\alpha}$) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving $PGC1{\alpha}$ during cardiac HR injuries.

Expression and Activity of the Na-K ATPase in Ischemic Injury of Primary Cultured Astrocytes

  • Kim, Mi Jung;Hur, Jinyoung;Ham, In-Hye;Yang, Hye Jin;Kim, Younghoon;Park, Seungjoon;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.275-281
    • /
    • 2013
  • Astrocytes are reported to have critical functions in ischemic brain injury including protective effects against ischemia-induced neuronal dysfunction. Na-K ATPase maintains ionic gradients in astrocytes and is suggested as an indicator of ischemic injury in glial cells. Here, we examined the role of the Na-K ATPase in the pathologic process of ischemic injury of primary cultured astrocytes. Chemical ischemia was induced by sodium azide and glucose deprivation. Lactate dehydrogenase assays showed that the cytotoxic effect of chemical ischemia on astrocytes began to appear at 2 h of ischemia. The expression of Na-K ATPase ${\alpha}1$ subunit protein was increased at 2 h of chemical ischemia and was decreased at 6 h of ischemia, whereas the expression of ${\alpha}1$ subunit mRNA was not changed by chemical ischemia. Na-K ATPase activity was time-dependently decreased at 1, 3, and 6 h of chemical ischemia, whereas the enzyme activity was temporarily recovered to the control value at 2 h of chemical ischemia. Cytotoxicity at 2 h of chemical ischemia was significantly blocked by reoxygenation for 24 h following ischemia. Reoxygenation following chemical ischemia for 1 h significantly increased the activity of the Na-K ATPase, while reoxygenation following ischemia for 2 h slightly decreased the enzyme activity. These results suggest that the critical time for ischemia-induced cytotoxicity of astrocytes might be 2 h after the initiation of ischemic insult and that the increase in the expression and activity of the Na-K ATPase might play a protective role during ischemic injury of astrocytes.