• Title/Summary/Keyword: Renewable portfolio standard

Search Result 91, Processing Time 0.028 seconds

Basic Study on Oversea Biomass Energy Resources 1 - Palm Biomass (해외 바이오매스 에너지자원 확보를 위한 기초조사 1 - 팜 바이오매스)

  • Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.439-449
    • /
    • 2014
  • RPS (Renewable Portfolio Standard) has increased wood pellet demand dramatically in recent years in Korea where self-supply rate of wood pellet is not more than 10%. However global production capacity of wood pellet is prospected to be unable to meet the global demand after 2020. Therefore it is urgently needed to develop new sustainable biomass energy resources which can replace wood pellet at lower cost. As a result of this study EFB (empty fruit bunch) and MF (mesocarp fiber), the representative solid palm biomass, are estimated to be generated at the rate of 20 and 28 million tons per year (based on 10% moisture content) in Malaysia and Indonesia, respectively in 2012. Total annual generation rate of EFB and MF is estimated as 48 million tons per year only in Malaysia and Indonesia in 2012. With calorific value of over 90% of wood pellet EFB is expected to be a excellent biomass energy resource which can replace wood pellet. EFB can be utilized as fuel for power generation or industrial purpose. However EFB may not be a proper fuel for domestic and greenhouse heating because of its high ash content.

Economics Analysis of Photovoltaic Power Generation Linked with Green Roof in Consideration of Seoul Solar Map-based RPS (서울시 햇빛지도 기반의 RPS제도를 고려한 옥상녹화 연계 태양광발전 시스템의 경제성 분석)

  • Kim, Tae-Han;Lee, So-Dam;Park, Jeong-Hyeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • In power supply systems for urban areas, issues such as a progressive tax have escalated recently. In this regard, photovoltaic power generation, which is appraised as an alternative power generation system, is drawing attention increasingly for its high stability and applicability to existing infrastructure. This study assessed the realistic feasibility of photovoltaic power generation and also analyzed the economic benefits expected when it is linked with green roof, which is likely to promote ecological functions in urban areas, based on the Seoul solar map, RPS, and actual monitoring data. The economics analysis of 30kW photovoltaic power generation applied with the monthly average horizontal solar radiation of six grades in the Seoul solar map showed that positive NPV was up to grade 4, while grade 5 or poorer showed negative NPV and indicated that it is difficult to assure appropriate feasibility. Compared with non-afforestation, when green roof was applied, monthly average power improvement efficiency was 7.2% at highest and 3.7% at lowest based on yearly actual monitoring data. The annual average was 5.3%, and the efficiency was high relatively in summer, including September and November. As for the economic benefits expected when 30kw photovoltaic power generation is combined with green roof based on the average horizontal solar radiation of grade 1 in the Seoul solar map, SP has improved 0.2 years to 7.4 years, and EP has improved 0.5 years to 8.3 years.

Study of a Photovoltaic System as an Emergency Power Supply for Offshore Plant Facilities (해양플랜트 설비의 비상전원공급을 위한 태양광 발전시스템 연구)

  • Choi, Gun Hwan;Lee, Byung Ho;Jung, Rho-Taek;Shin, Kyubo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The use of eco-friendly energy in the offshore plant system is expanding because conventional generators are operated by fossil fuel or natural gas. Eco-friendly energy, which replaces existing power generation methods, should be capable of generating the power for lighting protection equipment, airborne fault indication, parameter measurement, and others. Most of the eco-friendly energy used in offshore plant facilities is solar and wind power. In the case of using photovoltaic power, because the structure must be constructed based as flat solar panels, it can be damaged easily by the wind. Therefore, there is a need for a new generation system composed of a spherical structure that does not require a separate structure and is less influenced by the wind. Considering these characteristics, in this study we designed, fabricated, and tested a unit that could provide the most efficient spherical photovoltaic power generation considering wind direction and wind pressure. Our test results indicated that the proposed system reduced costs because it did not require any separate structure, used eco-friendly energy, reduced carbon dioxide emissions, and expanded the proportion of eco-friendly energy use by offshore plant facilities.

The Characterization of Woodchip Torrefaction and Byproduct Gas (우드칩 반탄화와 부생가스의 특성 분석)

  • Kang, Ku;Wang, Long;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.55-62
    • /
    • 2014
  • Torrefaction is considered as a promising pre-treatment for thermochemical utilization of biomass. Torrefaction temperature and time are the critical operation parameters. In this study, investigated were the effects of reaction temperature and time on product composition of torrefaction. scanning electron microscope (SEM) images and thermo gravimetric analyzer (TGA) results were also compared for the effects of the operating parameters. SEM images showed that the pores were observed at the temperature of $250^{\circ}C$ for 30 minutes. Rapid decreases in weight were observed the temperature between 200 and$400^{\circ}C$. Higher heating value of the torrefied biomass was over 5,000 kcal/kg at the temperature of $250^{\circ}C$ for 45 minutes. Energy density, which is defined as the ratio of the energy yield over the mass yield was 1.36 at the temperature of $250^{\circ}C$ for 45 minutes. The energy density was higher up to 1.6 at the temperature of $280^{\circ}C$, which indicates greater loss in mass. The major components of the gas produced in the torrefaction were $CO_2$ and CO, with traces of methane. The total amount of gas was 31.54 l/kg and the calorific value of the gas was $1,164.4Kcal/Nm^3$ at the temperature of $250^{\circ}C$ for 30 minute reaction time. Based on the results of this study, the temperature of effective torrefaction is about $250^{\circ}C$ for 30 to 45 minutes of reaction time. Considering the heating value, it is desirable to utilize the gas for efficient process of torrefaction.

Effect of Fuel Mixing Ratio on Fuel Consumption in a Oil Fired Power Plant (중유화력발전소에서 바이오연료 혼합연소가 연료소비량에 미치는 영향)

  • Hong, Sangpil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • Each of fuel consumption per hour was measured at the 320 MW and 380 MW generator output while changing mixing ratio of bio fuel oil to 50%, 80% and 100%. Fuel consumption per hour was increased from 11.0% to 20.4% as mixing ratio of bio fuel oil was changed from 50% to 100% at the 320 MW generator output comparing with fuel consumption per hour in case of bunker-C oil single firing. Fuel consumption per hour was also increased from 12.0% to 21.1% as mixing ratio of bio fuel oil was changed from 50% to 100% at the generator output 380 MW. Furthermore, it was confirmed that plant efficiency was decreased as mixing ratio of bio fuel oil was increased from 50% to 100% as a result that plant efficiency was calculated using the measured fuel consumption per hour, the generator output and the gross heating value.

  • PDF

Analyzing the Potential of Offset Credits in the Korean Emission Trading Scheme Focusing on Clean Development Mechanism Projects (CDM사업을 대상으로 한 국내 온실가스 상쇄배출권의 잠재량 산정 및 정책 제언)

  • Kim, Woori;Son, Yowhan;Lee, Woo-Kyun;Cho, Yongsung
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.453-460
    • /
    • 2018
  • The purpose of this study is to analyze the potential quantity of Korean Offset Credits (KOC) resulting from Certified Emission Reductions (CER) in 98 domestic Clean Development Mechanism (CDM) projects that were registered with the United Nations Framework Convention on Climate Change (UNFCCC) as of the end of 2016. Our results show that the total amount of potential KOC is 62,774 kt CO2eq. The potential KOC is only 23.4% of the total CER Issuance. During the first phase, this will be 3.2% of the allocated volume. This is because many projects are related to Renewable Portfolio Standard (RPS), HFC-23, and adipic acid N2O. There is a strong bias in some sectors and projects which could act as market distortion factors. Therefore, it is necessary to expand the target CDM project and activate non CDM offset projects. RPS projects bring fundamental changes to the energy sector, and it is worth reconsidering their acceptability. A wide variety of policy incentives are needed to address strong biases toward certain sectors and projects. The offset scheme has the advantage of allowing entities to reduce their GHG emissions cost effectively through a market mechanism as well as enabling more entities to participate in GHG reduction efforts both directly and indirectly. In contrast, having an inadequate offset scheme range and size might decrease the effort on GHG reduction or concentrate available resources on specific projects. As such, it is of paramount importance to design and operate the offset scheme in such a way that it reflects the situation of the country.

The Co-Combustion Characteristics of Coal and Wood Pellet in a 25W Lab-scale Circulating Fluidized Bed Reactor (25W급 순환유동층반응기에서 석탄과 우드펠릿의 혼소 특성 연구)

  • Kim, Jin Ho;Yang, Sang Yeol;Kim, Gyu Bo;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.683-691
    • /
    • 2015
  • Circulating Fluidized Bed(CFB) combustion has the several advantages which are the fuel flexibility, the economy, the efficiency and the environment. It is necessary to apply a renewable energy to produce electricity due to the Renewable Portfolio Standard(RPS) mandates recently. So, in this study, co-combustion with a coal and a wood pellet was investigated to evaluate the combustibility and the environment as function of blending ratio of them in a Lab-scale CFB reactor. To investigate the characteristics of the co-combustion, the blending ratio which is the weight of wood pellet by the total calorific value of the supplied, was considered. Bed material was a river sand(No. 7). As increasing the blending ratio, the exhausted gas emissions such as CO, NOx, HC and SOx were decreased. But in case of wood pellet over 30%, CO, HC and SOx emission were increased. And the gas temperatures at the downstream were decreased.

A Study on the Changes in Heavy Metal Emissions when Using Mixed Fuel in a Thermal Power Plant (화력발전소의 혼합연료 사용에 따른 중금속 배출량 변화 연구)

  • Song, Youngho;Kim, Ok;Park, Sanghyun;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.63-75
    • /
    • 2018
  • Objectives: The aim of this research is to explore the total heavy metals from a coal-fired power plant burning bituminous coal with wood pellets due to the implementation of the Renewable Portfolio Standard policy (RPS, 10% of electricity from renewable energy resources by 2023). Methods: The research was carried out by collecting archival data and using the USEPA's AP-42 & EMEP/EEA compilation of emission factors for use in calculating emissions. The Monte Carlo method was also applied for carrying out the calculations of measurement uncertainty. Results: In this paper, the results are listed as follows. Sb was measured at 110 kg (2015) and calculated as 165 kg (2019) and 201 kg (2023). Cr was measured at 1,597 kg (2015) and calculated as 1,687 kg (2019) and 1,728 kg (2023). Cu was measured at 2,888 kg (2015) and calculated as 3,133 kg (2019) and 3,264 kg (2023). Pb was measured at 2,580 kg (2015) and calculated as 2,831 kg (2019) and 2,969 kg (2023). Mn was measured at 3,011 kg (2015) and calculated as 15,034 kg (2019) and 23,014 kg (2023). Hg was measured at 510 kg (2015) and calculated as 513 kg (2019) and 537 kg (2023). Ni was measured at 1,720 kg (2015) and calculated as 1,895 kg (2019) and 1,991 kg (2023). Zn was measured at 7,054 kg (2015) and calculated as 9,938 kg (2019) and 11,778 kg (2023). Se was measured at 7,988 kg (2015) and calculated as 7,663 kg (2019) and 7,351 kg (2023). Conclusion: This shows that most heavy metals would increase steadily from 2015 to 2023. However, Se would decrease by 7.9%. This analysis was conducted with EMEP/EEA's emission factors due to the limited emission factors in South Korea. Co-firewood pellets in coal-fired power plants cause the emission of heavy metals. For this reason, emission factors at air pollution control facilities would be presented and the replacement of wood pellets would be needed.

Estimating the Investment Value of Fuel Cell Power Plant Under Dual Price Uncertainties Based on Real Options Methodology (이중 가격 불확실성하에서 실물옵션 모형기반 연료전지 발전소 경제적 가치 분석)

  • Sunho Kim;Wooyoung Jeon
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.645-668
    • /
    • 2022
  • Hydrogen energy is emerging as an important means of carbon neutrality in the various sectors including power, transportation, storage, and industrial processes. Fuel cell power plants are the fastest spreading in the hydrogen ecosystem and are one of the key power sources among means of implementing carbon neutrality in 2050. However, high volatility in system marginal price (SMP) and renewable energy certificate (REC) prices, which affect the profits of fuel cell power plants, delay the investment timing and deployment. This study applied the real option methodology to analyze how the dual uncertainties in both SMP and REC prices affect the investment trigger price level in the irreversible investment decision of fuel cell power plants. The analysis is summarized into the following three. First, under the current Renewable Portfolio Standard (RPS), dual price uncertainties passed on to plant owners has significantly increased the investment trigger price relative to one under the deterministic price case. Second, reducing the volatility of REC price by half of the current level caused a significant drop in investment trigger prices and its investment trigger price is similar to one caused by offering one additional REC multiplier. Third, investment trigger price based on gray hydrogen and green hydrogen were analyzed along with the existing byproduct hydrogen-based fuel cells, and in the case of gray hydrogen, economic feasibility were narrowed significantly with green hydrogen when carbon costs were applied. The results of this study suggest that the current RPS system works as an obstacle to the deployment of fuel cell power plants, and policy that provides more stable revenue to plants is needed to build a more cost-effective and stable hydrogen ecosystem.

Estimation of the production potential of domestic wood pellets using unused forest biomass by analyzing the potential volume of forest biomass and the growth of forest trees (산림바이오매스 부존 잠재량 및 임목생장량 분석을 통한 미이용 산림바이오매스 활용 국내산 Wood pellet 생산 가능량 예측 연구)

  • kim, Sang-Seon;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.247-253
    • /
    • 2018
  • To replace the imported biomass and to effectively cope with growing RPS(Renewable Portfolio Standard) in power sector, the domestic forest biomass resources for wood pellets were estimated from the preceding research and annual growth rate of forest trees in this study. Assuming that 20% of the by-product from forest trees processing were used as raw material for wood pellet and the wood pellet production capacity was based on the average value derived from the above two methods, unused by-product and residues generated 1.99million tons in 2016, 2.28million tons in 2020 and 3.08million tons in 2030. If 20% of by-products(pebbles, sawdust, etc.) from roundwood processing were used as raw material for wood pellets, the wood pellet could be produced 2.74million tons/year in 2016, 2.95million tons/year in 2020, 3.98million tons/year in 2030. Therefore, total amounts of wood pellet would be increased to 2.74million tons/year in 2016, 3.14million tons/year in 2020, 4.23million tons/year in 2030 when it considered unused by-product and residues from wood processing as raw materials.