• 제목/요약/키워드: Renewable generation

검색결과 1,209건 처리시간 0.027초

국내 신재생에너지 원별 발전단가 전망 (The forecast of renewable generation cost in Korea)

  • 김길신;한유리
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.140-140
    • /
    • 2011
  • Korea's RPS, which requires that power generation companies obtain a minimum percentage of their generation by using renewable energy, will take effect in 2012. Based on the first-year law enforcement, generation companies have to satisfy 2% of RPS compliance ratio in 2012. Then, the required RPS compliance ratio will increase up to 10% in 2022. Thus generation companies need to construct power plants that utilize various types of renewable energy sources such as PV and wind power. This work is aimed to analyze the cost of such a renewable power source in terms of capital cost, capacity factor, and fuel cost. We provide the analytical expectation on the renewable power generation cost of 2012 focusing on PV, onshore/offshore wind, fuel cell, and IGCC, which are focused by government policy.

  • PDF

델파이 활용 신재생 에너지 수요예측과 장기전원 구성의 경제성 평가 (Forecasting Renewable Energy Using Delphi Survey and the Economic Evaluation of Long-Term Generation Mix)

  • 구훈영;민대기
    • 대한산업공학회지
    • /
    • 제39권3호
    • /
    • pp.183-191
    • /
    • 2013
  • We address the power generation mix problem that considers not only nuclear and fossil fuels such as oil, coal and LNG but also renewable energy technologies. Unlike nuclear or other generation technologies, the expansion plan of renewable energy is highly uncertain because of its dependency on the government policy and uncertainty associated with technology improvements. To address this issue, we conduct a delphi survey and forecast the capacity of renewable energy. We further propose a stochastic mixed integer programming model that determines an optimal capacity expansion and the amount of power generation using each generation technology. Using the proposed model, we test eight generation mix scenarios and particularly evaluate how much the expansion of renewable energy contributes to the total costs for power generation in Korea. The evaluation results show that the use of renewable energy incurs additional costs.

신.재생에너지전원의 발전차액지원제도 적용을 위한 발전원가 적용범위 산정 (Evaluation of renewable generation cost for designing the purchasing tariff system about renewable energy power)

  • 조인승;이창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.840-842
    • /
    • 2005
  • Since 2001, Korea government has been purchasing the generation from renewable generation facilities with the higher incentive prices than market price in order to increase the penetration of renewable energies. Generally, the incentive purchase tariff is calculated on the base of the generation cost of renewable power facilities. This paper constructs the input data for economic analysis and evaluates the generation cost of PV, wind power, LFG and small hydro power using LCCA model.

  • PDF

CO2 배출, 원자력에너지, 신재생에너지 발전량과의 관계분석: 한국, 일본, 독일을 중심으로 (Study on the Relationship between CO2, Nuclear, and Renewable Energy Generation in Korea, Japan and Germany)

  • 윤정혜;강상목
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.9-22
    • /
    • 2020
  • This study analyzed the short- and long-term effects of nuclear and renewable energy generation on CO2 emissions in Korea, Japan, and Germany from 1987 to 2016 by using the unit root test, Johansen cointegration test, and ARDL model. The unit root test was performed, and the Johansen cointegration test showed cointegration relationships among variables. In the long run, in Germany, the generation of both nuclear and renewable energy was found to affect CO2 emission reduction, while South Korea's renewable energy generation, including hydropower, increased the emissions. Japan only showed significance in fossil fuels. In the short run, in the three countries, the generation of nuclear and renewable energy, excluding hydropower, affected CO2 emission. However, in Korea and Germany, nuclear and renewable energy generation, respectively, affected CO2 emission reduction. Although the rest are significant, the results showed that they increased CO2 emissions.

제주 계통 신재생 발전 자원의 유효 공급능력 추정에 관한 연구 (A Study on Estimation of Capacity Value for Renewable Generation in Jeju-Island)

  • 위영민
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.469-473
    • /
    • 2019
  • 신재생 발전 자원의 경우 기존 설비와 다르게 기후 환경적 요소에 의해 공급능력이 결정되기 때문에 신재생 발전 자원의 공급능력 산정을 위해 실효공급용량 계산이 필요하다. 본 연구에서는 신재생 발전 자원의 공급능력 추정 방법에 대한 국내 외 사례조사와 국내 제주 계통의 데이터를 이용한 검증 내용을 담고 있다. 본 논문은 신재생 발전 비율이 높은 제주계통을 별도로 신재생 발전 자원의 실효 공급능력을 추정한 것으로 기존 국내 연구와 차별성이 있다.

원자력 및 신재생에너지 발전의 CO2 감축 비용 효율성 비교 (Comparison of Cost-Efficiency of Nuclear Power and Renewable Energy Generation in Reducing CO2 Emissions in Korea)

  • 이용성;김현석
    • 자원ㆍ환경경제연구
    • /
    • 제30권4호
    • /
    • pp.607-625
    • /
    • 2021
  • 본 연구는 우리나라 발전 부문의 원자력과 신재생에너지 발전의 온실가스 감축효과를 추정하고, 원자력 발전의 사고위험에 따른 외부비용을 포함한 발전 비용을 고려하여 두 발전원의 온실가스 감축비용의 효율성을 비교하였다. 모형의 추정결과, 원자력 및 신재생에너지 발전 1% 증가는 각각 0.744%와 0.127%의 CO2 배출량을 감축시키는 것으로 분석되었다. 이는 CO2 배출량을 1% 감축시키기 위해서는 원자력 발전은 1.344%, 신재생에너지 발전은 7.874% 증가시켜야 함을 의미한다. 추정된 계수와 원자력 발전의 외부비용 포함 발전비용을 사용하여 1%의 CO2 배출량 감축을 위한 총 비용을 도출한 결과, 전체 발전량이 1MWh로 가정할 때 CO2 배출량 1%를 감축시키기 위한 원자력 발전비용은 외부비용에 따라 0.72~1.49달러로 계산되었으며, 신재생에너지 발전비용은 6.49달러로 나타났다. 이를 2020년 우리나라 총 화석연료 발전량(352,706GWh)을 기준으로 계산할 경우, 원자력 발전은 2.54억~5.26억 달러, 신재생에너지 발전은 22.89억 달러로 신재생에너지 발전이 원자력 발전보다 4.35~9.01배의 비용이 더 소요되는 것으로 분석되었다. 따라서 발전 부문의 온실가스 감축을 위해서는 원자력 발전이 신재생에너지 발전에 비해 높은 비용 효율성을 가지는 것을 알 수 있었다.

Examination of excess electricity generation patterns in South Korea under the renewable initiative for 2030

  • Kim, Philseo;Cho, So-Bin;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2883-2897
    • /
    • 2022
  • According to the Renewable Energy 3020 Implementation Plan announced in 2017 by the South Korean government, the electricity share of renewable energy will be expanded to 20% of the total electricity generation by 2030. Given the intermittency of electricity generation from renewable energy, realization of such a plan presents challenges to managing South Korea's isolated national electric grid and implies potentially large excess electricity generation in certain situations. The purpose of this study is: 1) to develop a model to accurately simulate the effects of excess electricity generation from renewables which would arise during the transition, and 2) to propose strategies to manage excess electricity generation through effective utilization of domestic electricity generating capabilities. Our results show that in periods of greater PV and wind power, namely the spring and fall seasons, the frequency of excess electricity generation increases, while electricity demand decreases. This being the case, flexible operation of coal and nuclear power plants along with LNG and pumped-storage hydroelectricity can be used to counterbalance the excess electricity generation from renewables. In addition, nuclear energy plays an important role in reducing CO2 emissions and electricity costs unlike the fossil fuel-based generation sources outlined in the 8th Basic Plan.

도서지역의 신재생에너지복합발전 전력계통 운영방안에 관한 정책연구 (The policy study on the power grid operation strategy of new and renewable energy combined generation system)

  • 김의환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • KEPCO was operating power plants with diesel generators in 49 islands including Baekryeong-Do, and the generation capacity was about 66 MW in 2008. The cost of fuel is increasing by the international oil price inflation and continuous rise of oil price is predicted. For the stabilizing of electric power supply to the separate islands, renewable energy and fuel cell systems were considered. Hydrogen is made using renewable energy such as wind power and solar energy, and then a fuel cell system generates electricity with the stored hydrogen. Though the system efficiency is low, it is treated as the only way to secure the stable electric supply using renewable energy at this present. The analytic hierarchy process was used to select suitable candidate island for the system installation and 5 islands including Ulleung-Do were selected. Economic evaluation for the system composed of a kerosene generator, a wind power, an electrolysis, and a fuel cell system was conducted with levelized generation cost based on present value methode. As the result, the necessity of renewable energy combined generation system and micro grid composition in the candidated islands was confirmed. Henceforth, the development of an integration technology which connects micro grid to the total power grid will be needed.

  • PDF

도서지역 전원개발 대안분석 및 정책 개선방향 (The Analysis on Power Development Options in Remote Islands and It's Implementation)

  • 이창호;조인승
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.108-117
    • /
    • 2006
  • This paper focus on power development options for remote islands. Recently, in accordance with progress in distributed generation technologies including renewable energy sources, many options are possible as power development option for island. At first we estimate generation cost by generation technology then recommend and suggest some countermeasures and implementation for institutional improvement.

  • PDF

크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발 (Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques)

  • 최영도;백자현;전동훈;박상호;최순호;김여진;허진
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.