• Title/Summary/Keyword: Renewable Energy Utilization

Search Result 283, Processing Time 0.025 seconds

Experimental Study on the Optimal Heat Exchanger of Thermoelectric Generation System for Industrial and Automobile Waste Heat Recovery (차량 및 산업설비 폐열회수용 열전발전시스템의 최적 열교환 시스템에 관한 실험적 연구)

  • Chung, Jae-Hoon;Kim, Woo-Chul;Lee, Jin-Ho;Yu, Tae-U.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.460-463
    • /
    • 2008
  • A large part of the overall industrial energy is dissipated as waste heat despite of much development in the utilization of thermal energy. A mean efficiency is reported to be only around 30 to 35%. The existing waste heat recovery technology has reached its limit and consequently, the development of a new technology is necessary. Improving efficiency using thermoelectric technology has recently come into the spotlight because of its unique way to recover thermal energy. In fact, thermoelectric generator directly converts thermal energy into electric energy by a solid state without any moving parts. Futhermore remarkable improvement in the thermoelectric energy conversion efficiency has been achieved. In this study, a thermoelectric generator was made using commercialized thermoelectric modules. With thermoelectric modules attached on a duct surface, hot air was blown into the duct using a hot air blower. On the other side of the module, a water jacket was attached to cool the module. With different air inlet temperatures and water flowrates, the electrical power of the thermoelectric generator was measured.

  • PDF

A Study on Computing Stochastic Capacity of Energy Storage Systems using Monte Carlo Simulations (몬테 카를로 시뮬레이션 기반 변동성을 고려한 에너지 저장 시스템 용량 계산에 대한 고찰)

  • Kim, Soowhan;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.424-429
    • /
    • 2020
  • An Energy Storage System (ESS) is recently drawing an increasing attention as an efficient tool to cope with variation in the energy system. In order to take the best utilization of ESS, the inherent variation of energy supply and demand should be properly addressed. This paper is concerned with computing the stochastic capacity of ESS in the face of such variations by way of Monte Carlo simulation. The issue of uncertainty in energy systems will be given further focus. More works are expected to be followed to address the issues in academia and industry.

Evaluation on the utilization possibility of waste mushroom logs as biomass resource for bioethanol production (바이오에탄올 생산을 위한 바이오매스 자원으로서 버섯골목의 이용 가능성 평가)

  • Lee, Jae-Won;Koo, Bon-Wook;Choi, Joon-Weon;Choi, Don-Ha;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.485-488
    • /
    • 2006
  • In order to investigate the possibility of waste mushroom logs as biomass resource chemical and physical characteristics of normal woods and waste mushroom logs such as crystallinity value, energy consumption, total sugar yield after hydrolysis chemical compounds and molecular weight distribution after acid hydrolysis, were examined. In the results, crystallinity of waste mushroom logs which were three year passed after the inoculation was decreased drastically from 49% to 33% during the cultivation. Lignin contents as chemical compounds of normal woods and waste mushroom logs were 21.07% and 18.78%, respectively. By the results of measurement of energy consumption, the size reduction of normal woods required a significantly higher energy than that of waste mushroom logs. In the hydrolysis, total sugar yield by enzyme and acid hydrolysis were high in waste mushroom logs(53% 57.5%) than in normal woods(42.9%, 47.17%). According to the molecular weight distribution using GPC, low molecular weight compounds were distributed in waste mushroom logs. Based on these results, waste mushroom logs have enough potential as material for developing alternative energy because of easily conversion to sugar by various hydrolysis methods and requirement of low energy consumption during size reduction.

  • PDF

High Utilization of Photovoltaic Power System in Rural Green Village Location Analysis and Evaluation using GIS - With Chubumyeon, Keumsan, Chungnam province - (GIS를 이용한 태양광 발전시스템의 활용도 높은 농촌 그린빌리지 적정입지 평가 - 충청남도 금산군 추부면을 중심으로 -)

  • Doh, Jae-Heung;Kim, Dae-Sik;Koo, Hee-Dong
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.1
    • /
    • pp.51-62
    • /
    • 2014
  • The composition of rural Green Village requires higher utilization of renewable energy in those selected rural villages. The purpose of this study is to select the best results of rural green villages when using photovoltaic power system(PV system). 10 different rural villages in Chubumyeon, Keumsan, Chungnam province, were selected as study villages. This study shows measured solar radiation data, a 20-year time series data, and GIS spatial analysis; and whose were used to predict the photovoltaic power generation. PV system is used as a form with capacity of 3kWp to use for personal and public houses. Generation data was calculated by the town, where the economics of the Green Village location analysis was performed; and the solar radiation's correction factor was calculated by the 20-year time series data and measured data by study villages. By applying to the data of DEM, slope and aspect of the study villages were found, therefore performed. Spatial analysis tools were performed by using solar radiation map's tools. Those data found were used to calculate the average needed energy every months. When used the properly calculated data, towns performed economical energy consumption in rural Green Village. Every study villages have showed very high potential for PV system. Sungdangri ranked at the first (7,401kWp/year), Jangdaeri follows behind to the second (7,203kWp/year) and Yogwangri at third (7,89kWp/year) which shows higher developed energy than other study villages. The areas covered of these three towns are as follows: Sungdangri at $33,300m^2$, Jangdaeri covers $18,000m^2$ and Yogwangri shows $46,800m^2$. With these results, analyzing the potentials using GIS spatial analysis before installation of PV system was possible. Also different villages and topography in study villages have showed various results by the area. For convenience and to shorten research time, it is possible and enough to use solar radiation tools when studying spatial analysis of solar radiation.

On Low-Carbon Green Waterfront Cities (해외 저탄소 녹색수변도시)

  • Kwon, Yong-Woo;Wang, Kwang-Ik;Yu, Seon-Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Low-carbon green waterfront cities for overseas cases were reviewed to propose the direction for Korea. The implications suggested include energy saving by resource circulation, compact land use planning, transit oriented development, and utilization of renewable energy. These in turn suggest the following implementations; (1) Energy saving according to compact city, complex land use, and transit oriented development, (2) Renewable energy use in buildings and daily lives, (3) Expansion of green space for carbon mitigation and improved quality of life, and (4) Water and resource circulation system. We finally discussed that development of the green waterfront cities in Korea requires the fundamentals of low-carbon green waterfront cities achieved by overseas cases study and technical investigation.

Strategies for Increasing Biomass Energy Utilization in Rural Areas - Focusing on heating for greenhouse cultivation - (농촌지역 바이오매스 에너지 보급 활성화 전략 - 시설재배 난방을 중심으로 -)

  • Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.9-20
    • /
    • 2015
  • The demand of renewable energy is expected to grow in the long run in spite of current stable lower oil prices. Energy consumption for heating in horticulture greenhouse is large and affects the profits of the farms. This study analyzed the availability of biomass in rural area and proposed the strategies for utilizing the biomass for greenhouse heating. Data reveal the annual average fuel consumption in greenhouses is about 78 TOE/ha. Considering biomass resource in rural areas, agricultural residues are not sufficient to meet the biomass demand from greenhouses. Therefore it is recommended to secure further biomass including wild herbaceous biomass and woody biomass from forest. Based on the conditions of biomass gasification equipment investment and fuel prices, maximum allowable price of biomass turned out about 100,000 KRW/t to be competitive to kerosine. Biomass supply chain should be established for facilitating biomass trading between biomass consumers and biomass producers such as farmers who provide crop residues. An online trading system is an example of the system where consumers who utilize biomass make payments to suppliers and get the information about the biomass. Intermediate collection storages are required to store biomass from distributed sources. Operation of biomass heating systems in demonstration greenhouses is necessary to get information to refine and further develop commercial biomass heating systems. Relatively large greenhouses are desirable to have biomass heating systems for economic viability. The location of the greenhouse farms should be selected within the area where enough biomass resources are available for feeding the biomass facility.

Development of Source Dechlorination Process for Waste Vinyls (폐비닐류의 원천 탈염공정 개발)

  • Chung, Soohyun;Na, Jeonggeol;Lee, Jonghyuk;Woo, Hee Myung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.186.1-186.1
    • /
    • 2011
  • Most of waste plastics including waste vinyls have been recycled up to about 50% of waste production, 4.5 million ton per year in 2009. To fundamentally increase the recycled amounts of waste plastics to waste production, the energy utilization of waste plastics is inevitable. But the contents of PVC included in waste plastics can limit the use as a RPF and make the air pollutants such as HCl and dioxin when it burns in the combustion system. Accordingly the source dechlorination by using heating method can be applied to make low contents of HCl as less than 0.6%. In this study the twin screw reactor using heat medium was used for the source dechlorination. As results of study, it was considered that this system is effective for the industrilal application.

  • PDF

A Concept of Buoyant Hybrid Power Generation System by using Solar Cell Modules and Power Generator in the Sea (태양전지 모듈 및 발전기를 사용한 해상 태양광-풍력 복합발전시스템 개념)

  • Cha, Kyung-Ho;Cha, Min-Jae;Lee, Hee-Sei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.91-93
    • /
    • 2008
  • A Buoyant Hybrid Power Generation System (BHPGS) described in this paper, is a conceptual approach to a hybrid solar-wind power generation in the near sea. The primary purpose of the BHPGS is given to improve utilization of solar cell modules. Main components of the BHPGS include a solar cell module, buoyant object, power generator, and support assembly including weight. Components such a generator controller, DC/AC converter, etc., are not configured in the current BHPGS because they can easily be purchased as a commercial-off-the-shelf product. In addition, some of the BHPGS applications are discussed.

  • PDF

An Economic Analysis of Potential Cost Savings from the Use of Low Voltage DC (LVDC) Distribution Network

  • Hur, Don;Baldick, Ross
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.812-819
    • /
    • 2014
  • The proposed technical work attempts to compare the two key technologies of power distribution, i.e. direct current (DC) and alternating current (AC) in a fiscal manner. The DC versus AC debate has been around since the earliest days of electric power. Here, at least four types of a low voltage DC (LVDC) distribution are examined as an alternative to the existing medium voltage AC (MVAC) distribution with an economic assessment technique for a project investment. Besides, the sensitivity analysis will be incorporated in the overall economic analysis model to cover uncertainties of the input data. A detailed feasibility study indicates that many of the common benefits claimed for an LVDC distribution will continue to grow more profoundly as it is foreseen to arise with the increased integration of renewable energy sources and the proliferation of energy storage associated with the enhanced utilization of uninterruptible power supply (UPS) systems.

Analysis of Actual Test for Road Solar Module (도로용 태양광 모듈 실증 모델 결과 분석)

  • Lee, Jong Hwan;Kim, Bong Seok;Shin, Dong-Hwi;Han, Soo Hee;Roh, Jae Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.466-471
    • /
    • 2019
  • Road photovoltaic power generation is a technology that combines photovoltaic power generation while maintaining the function of the existing road by installing special photovoltaic modules on it. In this paper, we developed three types of modules and structures suitable for sidewalk blocks and element technology for the development of a solar road module for a sidewalk and bicycle road. The road solar potential in Korea is 10 GW. After analyzing the daily data obtained after the construction of a 10 kW solar road testbed, it was found that its utilization rate compared to the general photovoltaic energy is 80%.