• 제목/요약/키워드: Renewable Energy Hybrid

검색결과 275건 처리시간 0.025초

독립형 마이크로그리드에서 신재생에너지 최적구성 알고리즘에 관한 연구 (A Study on Optimal Hybrid-Renewable Energy Configuration of Islanded Microgrids)

  • 우상민;이성훈;곽형근;김성열;손현일;김진오
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.511-515
    • /
    • 2012
  • At the moment, with an interest in renewable energy sources (RES) that continue to grow its penetration will be expected to considerably increase in the future power system. However, this penetration of RES leads to new challenges to be solved in electric power systems. In this paper, optimal configuration of renewable energy resources and operation strategy is presented. By using this methodology for allocation of the optimal sizes and types, system operational efficiency and stability of the microgrid will be maximized.

  • PDF

박막 태양전지 연속 생산 시스템 개발에 관한 연구 (A study on development of continuity process system for thin film solar cell)

  • 배성우;조정대;김동수;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.377-377
    • /
    • 2009
  • Currently, new and renewable energy come into the spotlight, such as solar energy, wind power, fuel cell, hybrid car etc., due to the energy resources is being depleted. In order to solve like this problem, we addressed the roll to roll printing machine for the thin film solar cell by using printing technology. For the this research, we archived concept design and verified propriety.

  • PDF

플러스에너지하우스 설계 및 에너지 성능 평가 (Design and Energy Performance Evaluation of Plus Energy House)

  • 김민휘;임희원;신우철;김효중;김현기;김종규
    • 한국태양에너지학회 논문집
    • /
    • 제38권2호
    • /
    • pp.55-66
    • /
    • 2018
  • South Korea aims to shift the 20 percent of electricity supplement from the fossil fuel including the nuclear to renewable energy systems by 2030. In order to realize this agenda in the buildings, the plus energy house is necessary to increase the renewable energy supplement beyond the zero energy house. This paper suggested KePSH (KIER Energy-Plus Solar House) and energy performance of house and renewable energy systems was investigated. The KePSH has the target of generating 40% surplus energy than the conventional house energy consumption. The plus energy house is the house that generates surplus energy from the renewable energy sources than that consumes. In order to minimize the cooling and heating load of the house, the shape design and passive parameters design were conducted. Based on the experimental data of the plug load in the typical house, the total energy consumption of the house was estimated. This paper also suggested renewable energy sources integrated HVAC system using air-source heat pump system. Two cases of renewable energy system integration methods were suggested, and energy performance of the cases was investigated using TRNSYS 17 program. The results showed that the BIPV (building integrated photovoltaic) system (i.e., CASE 1) and BIPV and BIST system (i.e., CASE 2) shows 42% and 29% of plus energy rate, respectivey. Also, CASE 1 can generate 59% more surplus energy compared with the CASE 2 under the same installation area.

Micro Energy Building 운영사례 분석 (Analysis of Micro Energy Building Operation)

  • 최형진;박시삼;나상민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.140.2-140.2
    • /
    • 2011
  • Renewable energy(RE) systems have difficulties in operating and management due to the intermittency of the energy generation. Stochastic supply profiles of RE creates problems for mechanical and electrical design in relation to the selection of technology types and capacities of RE to be installed. This paper presents an methodology of the feasibility assessment of RE-integrated energy systems on the basis of hourly demand/supply analysis tools. Also, this paper shows the feasibility and the usefulness of GS REMA(Renewable Energy Matching Analysis) and HOMER by comparing actual energy data.

  • PDF

태양광시스템과 연료전지시스템의 통합에 따른 패러데이 효율성 (Combined System of Solar Cell and Fuel Cell)

  • 황준원;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.122-122
    • /
    • 2009
  • Development of renewable energy is promoted to achieve sustainability. So researchers are seeking and developing a new, clean, safe and renewable energy. Fuel cell energy and solar cell energy are expected to be one of the solutions. The emissions of fuel cell is low, the by-product is low, the by-product is only pure water. This paper presents the efficiency of the hybrid system organized with fuel cell and solar cell in faraday law.

  • PDF

지열-태양열원 복합시스템의 부하추종특성에 관한 실험 연구 (An Experimental Study on the Load Delivery Characteristics of Hybrid Energy System with Geothermal and Solar Heat Sources)

  • 황인주;우남섭
    • 한국지열·수열에너지학회논문집
    • /
    • 제2권2호
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of the present study is to investigate the load delivery characteristics of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of a residential house in Korea. The hybrid energy system consists of ground source heat pump of 2 RT for cooling with a 150 m vertical U-bend ground heat exchanger, solar collectors of 4.8 m2 and gas fired backup boiler. The averaged coefficient of performance of geothermal module during cooling and heating seasons are evaluated as about 4.5 and 3.8, respectively.

  • PDF

Frequency Control of in Hybrid Wind Power System using Flywheel Energy Storage System

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.229-234
    • /
    • 2014
  • In this paper, a design problem of the flywheel energy storage system controller using genetic algorithm (GA) is investigated for a frequency control of the wind diesel hybrid power generation system in an isolated power system. In order to select parameters of the FESS controller, two performance indexes are used. We evaluated a frequency control effect for the wind diesel hybrid power system according to change of the weighted values of a performance index. To verify performance of the FESS controller according to the weighted value of the performance index, the frequency domain analysis using a singular value bode diagram and the dynamic simulations for various weighted values of performance index were performed. To verify control performance of the designed FESS controller, the eigenvalue analysis and the dynamic simulations were performed. The control characteristics with the two designed FESS controller were compared with that of the conventional pitch controller. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional controller.

하이브리드 급전을 위한 다양한 가정용 교류부하의 직류특성연구 (DC Characteristics Analysis of Various AC loads for Hybrid Distribution)

  • 이영진;한동화;최중묵;정병환;김동진;최규하
    • 전력전자학회논문지
    • /
    • 제15권3호
    • /
    • pp.207-217
    • /
    • 2010
  • 현재 디지털 제품의 사용의 증가로 제품 내부의 DC 전원의 사용이 증가하는 가운데 시스템의 구동전압을 공급하기 위해 기기내부에 장착된 AC/DC컨버터로 인한 입력전류의 역률저하 및 고조파 증가, 그리고 AC/DC 컨버터에서 발생하는 변환 손실 등의 문제가 발생한다. 하이브리드 배전시스템은 기존의 AC부하(전동기 부하 및 변압기 부하)와 DC 부하(컴퓨터, TV, LED조명)에 AC 와 DC 전원을 동시에 공급하며, 직류출력 전원(신재생에너지 및 배터리뱅크)과 상용전원에서 전력을 공급받아 사용자에게 DC 및 AC 전력을 공급해주는 시스템으로 상용전원의 효율을 향상시키고 신재생에너지의 사용 편의성을 올리며 가정에 AC와 DC를 동시에 공급하는데 주목적이 있다. 본 논문을 통해 DC 및 AC 동시 배전을 위해 기존 교류부하의 직류특성에 관한 연구를 하며, 하이브리드 배전의 적절한 DC 전압레벨을 선정한다.

지열 Hybrid System 개발을 통한 대형 공동구조물 지열에너지 적용성 평가 (Application of the Geothermal Hybrid System for Huge Size Common Structures with Heating & Cooling System)

  • 박시삼;나상민;박종헌;이건중;김태원;김승엽
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.588-591
    • /
    • 2009
  • Ground source heat pump system; GSHPs is close to most practical use for early stage investment cost and energy efficiency in new renewable energies, and currently considered utilizing to the heat and cooling system of a building. Particularly, the case to utilize 'Standing Column well heat source gathering method' in the open standards process to have the excellent capability of gathering geothermal source is increased. But the research for the optimal design technology and the assessment of a pollution level of the ground to utilize a single well for gathering geothermal is insignificant and the design is insufficient. The heating and cooling system and the equipment to utilize a large size residential development to have over 1000 households have not developed yet. Therefore, our company developed 'geothermal hybrid system' which can construct the heat and cooling system using geothermal energy for a large size residential development of over 1000 households and conducted the evaluation of economic feasibility. Moreover we developed automatic equipment for gathering geothermal source and PLC (Programmable logic controller) to have optimal efficiency and FCU (fan coil unit) considering the floors of large size apartments.

  • PDF

제로에너지 솔라하우스(KIER ZeSH)의 에너지 자립도 및 경제성 분석 (The Study on the Energy self-sufficiency and Economic Analysis of KIER Zero Energy Solar House)

  • 정선영;백남춘;유창균;윤응상;윤종호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • In this study, the energy and economic analysis of KIER Zero Energy Solar House (KIER ZeSH) was carried out. KIER ZeSH was designed and constructed in the end of 2009 for the purpose of more than 70% energy self-sufficiency in total load as well as less than 20% of additional construction cost. The several building energy conservation technologies like as super insulation, high performance window, wast heat recovery system, etc and renewable energy system. The renewable heating and cooling system is a kind of solar thermal system combined with geo-source heat pump as a back-up device. The capacity of 3.15kW solar BIPV system was also installed on the roof. The measurement by monitering system of ZeSH was conducted for one year from November 2009 to October 2010. The energy self-sufficiency and economic analysis were conducted based on the this monitering result. As a result, the energy self sufficiency is about 83% which is higher than that of the target and the payback period is 11 years.

  • PDF