• Title/Summary/Keyword: Renewable Algorithm

Search Result 228, Processing Time 0.032 seconds

A Study on The Performance Verification and Economic Evaluation of ESS for Frequency Regulation Application (주파수조정용 ESS의 성능검증 및 경제성평가 알고리즘에 관한 연구)

  • Lee, Ju-Gang;Choi, Sung-Sik;Kang, Min-Kwan;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.738-744
    • /
    • 2017
  • Recently, the installation of energy storage systems (ESSs) has increased in parallel with the extension of renewable energy resources. However, there has been no concrete analysis ofthe performance verification and economic evaluation of ESSs,which makes it difficult to perform aneffective installation and operation of an ESS. In particular, there are no international technical standards and guidelines on electric ESS for frequency regulation applications. Therefore, acomprehensive study on the power quality, impact on grid, extent of contribution, and cost benefit study of ESS are strongly being required. Under these backgrounds, this paper proposes a performance verification algorithm on ESS for frequency regulation application based on ananalysis of the AGC(Automatic Generation Control) performance verification method of PJM in USA. In addition,this paper proposes an economic evaluation algorithm on a 500 MW installation of ESS for frequency regulation applications using the account settlement of an expensive gas-fired generation plant and coal-fired power generation plant. From the simulation with real ESS operation data and 500 MW installation case, it wasconfirmed that the ESS showssuperior performance toany other conventional generators and provides anannual benefit of 500 MW ESS are between 345~429 billon won.

A study on the Optimal Configuration Algorithm for Modeling and Improving the Performance of PV module (태양광모듈의 모델링 및 성능향상을 위한 최적구성방안에 관한 연구)

  • Jeong, Jong-Yun;Choi, Sung-Sik;Choi, Hong-Yeol;Ryu, Sang-Won;Lee, In-Cheol;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.723-730
    • /
    • 2016
  • Solar cells in a PV module are connected in series and parallel to produce a higher voltage and current. The PV module has performance characteristics depending on solar radiation and temperature. In addition, the PV system causes power loss by special situations, including the shadows of the surrounding environment, such as nearby buildings and trees. In other words, an increase in power loss and a decrease in life cycle can occur because of the partial shadow and hot-spot effect. Therefore, this paper proposes the optimal configuration algorithm of a bypass diode to improve the output of a PV module and one of a PV array to minimize the loss of the PV array. In addition, this paper presents a model of a PV module and PV array based on the PSIM S/W. The simulation results confirmed that the proposed optimal configuration algorithms are useful tools for improving the performance of PV system.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes (고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화)

  • Zhou, Tianjun;Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.557-567
    • /
    • 2016
  • In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

Semantic Segmentation for Roof Extraction using Official Buildings Information (건물 통합 정보를 이용한 지붕 추출 의미론적 분류)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.582-583
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. . In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period (Hajj) is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period (Haj) to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Design and Implementation of Ethereum-based Future Power Trading System (이더리움 기반의 선물(Future) 전력 거래 시스템 설계)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.584-585
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.