• Title/Summary/Keyword: Rendezvous

Search Result 103, Processing Time 0.022 seconds

A QoS of Delay supporting Scheme for IP Multicast Routing (인터넷 멀티캐스트 라우팅에서 지연시간에 대한 QoS를 지원하는 방법)

  • Park, Se-Hun;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.498-507
    • /
    • 2001
  • For the Internet multicast routing, there are some protocols researched. This paper presents a new protocol called DPIM (Delay-bounded PIM) to support QoS of delay in multicast routing. This protocol is based on PIM-SM. When the specified delay bound is not satisfied by dynamic membership, the RP (Rendezvous Point) of shared tree is changed and the shared tree is reconstructed. Therefore, the QoS of delay is always supported in this protocol. Through performance analysis and comparison with other protocol, we certify that this protocol is pertinent.

  • PDF

Rendezvous Mission to Apophis: I. Mission Overview

  • Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2021
  • An asteroid is important for understanding the condition of our solar system in early-stage because an asteroid, considered as a building block of the solar system, preserves the information when our solar system was formed. It has been continuously flowing into the near-Earth space, and then some asteroids have a probability of impacting Earth. Some asteroids have valuable minerals and volatiles for future resources in space activity. Korean government clarified, in the 3rd promotion plan for space activity, an asteroid sample return mission by the mid-2030s. However, it is almost impossible to do so based on only a single experience of an exploration mission to the Moon, Korea Pathfinder Lunar Orbiter, which will be launched in mid-2022. We propose a Rendezvous Mission to Apophis(RMA), beneficial in terms of science, impact hazardous, resource, and technical readiness for the space exploration of Korea.

  • PDF

Rendezvous Mission to Apophis: V. Wide-Angle Camera Science

  • JeongAhn, Youngmin;Lee, Hee-Jae;Jeong, Minsup;Kim, Myung-Jin;Choi, Jin;Moon, Hong-Kyu;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.59.1-59.1
    • /
    • 2021
  • The Korean spacecraft for the exploration of Apophis will be equipped with an optical navigation camera with a wide-angle lens. The major purpose of the wide-angle camera is to capture imagery during the rendezvous phase in order to determine the spacecraft's position and the pointing direction relative to the asteroid Apophis. Two potential sciences, however, can be achieved by the wide-angle camera: (1) to measure the high-order gravity terms, and (2) to capture possible ejecting small particles. In this presentation, we will discuss instrument specification and operation scenario required to accomplish the given science objectives.

  • PDF

Center-based Shared Route Decision Algorithms for Multicasting Services (멀티캐스트 서비스를 위한 센터기반 공유형 경로 지정 방법)

  • Cho, Kee-Sung;Jang, Hee-Seon;Kim, Dong-Whee
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.49-55
    • /
    • 2007
  • Recently, with the IPTV services, e-learning, real-time broadcasting and e-contents, many application services need the multicasting routing protocol. In this paper, the performance of the algorithm to assign the rendezvous router (RP: rendezvous point) in the center-based multicasting mesh network is analyzed. The estimated distance to select RP in the candidate nodes is calculated, and the node minimizing the distance is selected as the optimal RP. We estimate the distance by using the maximum distance, average distance, and mean of the maximum and average distance between the RP and members. The performance of the algorithm is compared with the optimal algorithm of all enumeration. With the assumptions of mesh network and randomly positioned for sources and members, the simulations for different parameters are studied. From the simulation results, the performance deviation between the algorithm with minimum cost and optimal method is evaluated as 6.2% average.

Spacecraft Rendezvous Considering Orbital Energy and Wait Time (에너지와 대기시간을 고려한 우주비행체 랑데부)

  • Oghim, Snyoll;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.775-783
    • /
    • 2017
  • In this paper, an impulsive rendezvous problem by using minimum energy of spacecraft in different orbits is addressed. In particular, the orbits considered in this paper are the general orbits including the elliptic orbit, while most of the orbits considered in the literature have been restricted within co-planar or circular orbits. The constraints for solving this optimization problem are the Kepler's equation formulated with the universal variable, and the final position and velocity of two spacecraft. Also, the Lagrange coefficients, sometimes called as f and g solution, are used to describe the orbit transfer. The proposed method technique is demonstrated through numerical simulation by considering the minimum energy, and both the minimum energy and the wait time, respectively. Finally, it is also verified by comparing with the Hohmann transfer known as the minimum energy trajectory. Although a closed-form solution cannot be obtained, it shows that the suggested technique can provide a new insight to solve various orbital transfer problems.

Rendezvous Node Selection in Interworking of a Drone and Wireless Sensor Networks (드론과 무선 센서 네트워크 연동에서 랑데부 노드 선정)

  • Min, Hong;Jung, Jinman;Heo, Junyoung;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.167-172
    • /
    • 2017
  • Mobile nodes are used for prolonging the life-time of the entire wireless sensor networks and many studies that use drones to collected data have been actively conducted with the development of drone related technology. In case of associating a drone and tactical wireless sensor networks, real-time feature and efficiency are improved. The previous studies so focus on reducing drone's flight distance that the energy consumption of sensor nodes is unbalanced. This unbalanced energy consumption accelerates the network partition and increases drone's flight distance. In this paper, we proposed a new selection scheme considered drone's flight distance and nodes' life-time to solve this problem when rendezvous nodes that collect data from their cluster and directly communicate with a drone are selected.

Traffic-Adaptive Dynamic Integrated Scheduling Using Rendezvous Window md Sniff Mode (랑데부 윈도우와 스니프 모드를 이용한 트래픽 적응 동적 통합 스케줄링)

  • 박새롬;이태진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.613-619
    • /
    • 2003
  • Bluetooth is a communication technology enabling short-range devices to be wirelessly connected. A master and one or more slave devices are connected to form a piconet, and piconets are joined to form a scatternet. The units participating in two or more piconets in a scatternet, is called bridge or gateway nodes. In order to operate the scatternet efficiently, both piconet scheduling for the master and slaves of a piconet, and scatternet scheduling for the bridge nodes are playing important roles. In this paper, we propose a traffic-adaptive dynamic scatternet scheduling algorithm based on rendezvous points and rendezvous windows. The performance of the proposed algorithm is compared and analyzed with that of a static scheduling algorithm via simulations. Simulation results show that our algorithm can distribute wireless resources efficiently to bridge nodes depending on the traffic characteristics.

Development of Drag Augmentation Device for Post Mission Disposal of Nanosatellite (초소형위성의 폐기 기동을 위한 항력 증대 장치 개발)

  • Kim, Ji-Seok;Kim, Hae-Dong
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • In this paper, we described the development of a drag augmentation device for nanosatellite. Recently, space industry has entered the New Space era, and barriers to entry into Low Earth Orbit (LEO) for artificial objects such as small rockets and nanosatellite mega constellations have been significantly lowered. As a result, the number of space debris is increasing exponentially, and it is approaching as a major threat to satellite currently in operation as well as satellites to be launched in near future. To prevent this, international organizations like Inter-Agency Space Debris Coordination Committee (IADC) have been proposed space debris mitigation guidelines. The Korea Aerospace Research Institute (KARI) conducted KARI Rendezvous & Docking demonstration SATellite (KARDSAT) project, the first nanosatellites for rendezvous and docking technology demonstration in Korea, and we also developed drag augmentation device for KARDSAT Target nanosatellite that complied with the international guideline of post-mission disposal.

Maximizing the Probability of Detecting Interstellar Objects by using Space Weather Data (우주기상 데이터를 활용한 성간물체 관측 가능성의 제고)

  • Kwon, Ryun Young;Kim, Minsun;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2021
  • Interstellar objects originate from other stellar systems. Thus, they contain information about the stellar systems that cannot be directly explored; the information includes the formation and evolution of the stellar systems and the possibility of life. The examples observed so far are 1l/Oumuamua in 2017 and 2l/Borisov in 2019. In this talk, we present the possibility of detecting interstellar objects using the Heliospheric Imagers designed for space weather research and forecasting by observing solar wind in interplanetary space between the Sun and Earth. Because interstellar objects are unpredictable events, the detection requires observations with wide coverage in spatial and long duration in temporal. The near-real time data availability is essential for follow-up observations to study their detailed properties and future rendezvous missions. Heliospheric Imagers provide day-side observations, inaccessible by traditional astronomical observations. This will dramatically increase the temporal and spatial coverage of observations and also the probability of detecting interstellar objects visiting our solar system, together with traditional astronomical observations. We demonstrate that this is the case. We have used data taken from Solar TErrestrial RElation Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) HI-1. HI-1 is off-pointed from the Sun direction by 14 degrees with 20 degrees of the field of view. Using images observed from 2007 to 2019, we have found a total of 223 small objects other than stars, galaxies, or planets, indicative of the potential capability to detect interstellar objects. The same method can be applied to the currently operating missions such as the Parker Solar Probe and Solar Orbiter and also future L5 and L4 missions. Since the data can be analyzed in near-real time due to the space weather purposes, more detailed properties can be analyzed by follow-up observations in ground and space, and also future rendezvous missions. We discuss future possible rendezvous missions at the end of this talk.

  • PDF

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF