Abstract
In this paper, an impulsive rendezvous problem by using minimum energy of spacecraft in different orbits is addressed. In particular, the orbits considered in this paper are the general orbits including the elliptic orbit, while most of the orbits considered in the literature have been restricted within co-planar or circular orbits. The constraints for solving this optimization problem are the Kepler's equation formulated with the universal variable, and the final position and velocity of two spacecraft. Also, the Lagrange coefficients, sometimes called as f and g solution, are used to describe the orbit transfer. The proposed method technique is demonstrated through numerical simulation by considering the minimum energy, and both the minimum energy and the wait time, respectively. Finally, it is also verified by comparing with the Hohmann transfer known as the minimum energy trajectory. Although a closed-form solution cannot be obtained, it shows that the suggested technique can provide a new insight to solve various orbital transfer problems.
본 논문에서는 서로 다른 궤도상에 있는 두 우주비행체의 랑데부를 위한 최소 에너지 순간추력을 구하는 문제를 다룬다. 두 우주비행체의 궤도는 공면 궤도나 원 궤도 같이 특정 지어진 궤도가 아닌 일반적인 궤도이다. 이러한 최적화 문제를 다루기 위해 범용변수를 사용한 케플러 방정식과 두 우주비행체의 최종 위치 및 속도를 구속조건으로 사용하며, 전이 궤도의 정보를 얻기 위해 라그랑지 계수를 이용한다. 이 방법은 최소 에너지를 고려한 예시와 대기시간까지 고려한 예시를 통해 보여 지며, 최소 에너지 궤도로 알려진 호만 궤도와 비교함으로써 검증된다. 비록 닫힌 형태의 해를 얻을 수는 없었지만, 수치해석적 방식을 적용함으로써 다양한 궤도 전이 문제의 해를 구할 수 있음을 보여준다.