• Title/Summary/Keyword: Rendering quality

Search Result 247, Processing Time 0.023 seconds

Enhancement Method of Depth Accuracy in DIBR-Based Multiview Image Generation (다시점 영상 생성을 위한 DIBR 기반의 깊이 정확도 향상 방법)

  • Kim, Minyoung;Cho, Yongjoo;Park, Kyoung Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.237-246
    • /
    • 2016
  • DIBR (Depth Image Based Rendering) is a multimedia technology that generates the virtual multi-view images using a color image and a depth image, and it is used for creating glasses-less 3-dimensional display contents. This research describes the effect of depth accuracy about the objective quality of DIBR-based multi-view images. It first evaluated the minimum depth quantization bit that enables the minimum distortion so that people cannot recognize the quality degradation. It then presented the comparative analysis of non-uniform domain-division quantization versus regular linear quantization to find out how effectively express the accuracy of the depth information in same quantization levels according to scene properties.

An Improved Method of Guaranteeing Frame Rates of Avionics Simulator based on HMD Motion

  • Lee, Jeong-Hoon;Jo, Yong-Il;Kim, Kyong Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.57-62
    • /
    • 2018
  • In this paper, we propose an improved algorithm for rendering method to guarantee frame rates based on HMD (Head Mounted Display) motion in an avionics simulator. One of important issues in HMD simulators is to guarantee frame rates despite fast motion of HMD which is more rapid than the aircraft's moving speed to maintain a quality of images. Therefore, we propose an algorithm considering the moving speed of a pilot's head: Improved Speed-Based LOD (Level-Of-Detail) Control (ISBLC). In the proposed algorithm, frame rates are improved by changing dynamic LOD which determines details of objects for rendering images. Throughout the experiments, we show the average frame rates are achieved up to 60 and minimum frame rates are guaranteed up to 40. The proposed algorithms will be used HMD simulation in avionics simulators.

RAY-SPACE INTERPOLATION BYWARPING DISPARITY MAPS

  • Moriy, Yuji;Yendoy, Tomohiro;Tanimotoy, Masayuki;Fujiiz, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.583-587
    • /
    • 2009
  • In this paper we propose a new method of Depth-Image-Based Rendering (DIBR) for Free-viewpoint TV (FTV). In the proposed method, virtual viewpoint images are rendered with 3D warping instead of estimating the view-dependent depth since depth estimation is usually costly and it is desirable to eliminate it from the rendering process. However, 3D warping causes some problems that do not occur in the method with view-dependent depth estimation; for example, the appearance of holes on the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Depth discontinuity causes artifacts on the rendered image. In this paper, these problems are solved by reconstructing disparity information at virtual camera position from neighboring two real cameras. In the experiments, high quality arbitrary viewpoint images were obtained.

  • PDF

An Efficient Virtual Teeth Modeling for Dental Training System

  • Kim, Lae-Hyun;Park, Se-Hyung
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.41-44
    • /
    • 2009
  • This paper describes an implementation of virtual teeth modeling for a haptic dental simulation. The system allows dental students to practice dental procedures with realistic tactual feelings. The system requires fast and stable haptic rendering and volume modeling techniques working on the virtual tooth. In our implementation, a volumetric implicit surface is used for intuitive shape modification without topological constraints and haptic rendering. The volumetric implicit surface is generated from input geometric model by using a closest point transformation algorithm. And for visual rendering, we apply an adaptive polygonization method to convert volumetric teeth model to geometric model. We improve our previous system using new octree design to save memory requirement while increase the performance and visual quality.

Comparing BRDF Models: Representation of Measured BRDF (BRDF 모델비교: 측정 BRDF의 표현을 중심으로)

  • Lee, Joo-Haeng;Kim, Sung-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.346-354
    • /
    • 2009
  • BRDF (bidirectional reflectance distribution function) is critical in realistic simulation of material appearances since it models the directional characteristics of reflection of light. Although many BRDF models have been proposed so far, it is still not easy to find one specific model that could represent all the reflection properties of real materials such as generalized diffusion, off-specular reflection, Fresnel effect, and back scattering. In this paper, we compare three BRDF models including B-spline volume BRDF (BVB), Cook-Torrance, and Lafortune in their ability to represent the measured BRDF data for physically-based rendering. We show that B-spline volume BRDF surpass the others in quality of data fitting and rendering, especially for materials without specular reflections.

Search for Mn4+-Activated Red Phosphor by Genetic Algorithm (유전 알고리즘을 이용한 Mn4+ 활성 적색 형광체 탐색)

  • Kim, Minseuk;Park, Woon Bae
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.312-317
    • /
    • 2017
  • In the construction of a white LED, the region of the red emission is a very important factor. Red light emitting materials play an important role in improving the color rendering index of commercial lighting. These materials also increase the color gamut of display products. Therefore, the development of novel phosphors with red emission and the study of color tuning are actively underway to improve product quality. In the present study, heuristic algorithms were used to search for phosphors capable of increasing the color rendering index and color gamut. Using a heuristic algorithm, the phosphors that were identified were $SrGe_4O_9:Mn^{4+}$ and $BaGe_4O_9:Mn^{4+}$. Emission spectra study confirmed that these phosphors emit light in the deep red wavelength region, which can fulfill the requirement for the improvement in color rendering index and color gamut for a white LED.

Intra-picture Block-matching Method for Codebook-based Texture Compression

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5063-5073
    • /
    • 2016
  • In this paper, an efficient texture compression method is proposed for fast rendering, which exploits the spatial correlation among blocks through intra-picture block matching. Texture mapping is widely used to enhance the visual quality of results in real-time rendering applications. For fast texture mapping, it is necessary to identify an effective trade-off between compression efficiency and computational complexity. The conventional compression methods utilized for image processing (e.g., JPEG) provide high compression efficiency while resulting in high complexity. Thus, low complexity methods, such as ETC1, are often used in real-time rendering applications. Although these methods can achieve low complexity, the compression efficiency is still lower than that of JPEG. To solve this problem, we propose a texture compression method by reducing the spatial redundancy between blocks in order to achieve the better compression performance than ETC1 while maintaining complexity that is lower than that of JPEG. Experimental results show that the proposed method achieves better compression efficiency than ETC1, and the decoding time is significantly reduced compared to JPEG while similar to ETC1.

A DoF-Based Efficient Image Abstraction (피사계 심도를 고려한 효율적인 이미지 추상화)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.1-10
    • /
    • 2018
  • In this paper, we present a non-photorealistic rendering technique that automatically delivers a stylized abstraction of a photograph with DoF(Depth of field). Our approach is a new filtering method that efficiently classifies DoF regions using RGB channels and automatically adjusts the color abstraction and extracted line quality based on this classification. This DoF-based filtering is simple, fast, and easy to implement and significantly improves the abstraction performance in terms of feature enhancement and stylization.

Grid Acceleration Structure for Efficiently Tracing the Secondary Rays in Dynamic Scenes on Mobile Platforms (모바일 환경에서의 동적 장면의 효율적인 이차 광선 추적을 위한 격자 가속 구조)

  • Seo, Woong;Choi, Byeongjun;Ihm, Insung
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.573-580
    • /
    • 2017
  • Despite the recent remarkable advances in the computing power of mobile devices, the heat and battery problems still restrict their performances, particularly compared to PCs. Therefore, in the application of the ray-tracing technique for high-quality rendering, the consideration of a method that traces only the secondary rays while the effects of the primary rays are generated through rasterization-based OpenGL ES rendering is worthwhile. Given that most of the rendering time is for the secondary-ray processing in such a method, a new volume-grid technique for dynamic scenes that enhances the tracing performance of the secondary rays with a low coherence is proposed here. The proposed method attempts to model all of the possible spatial secondary rays in a fixed number of sampling rays, thereby alleviating the visitation problem regarding all of the cells along the ray in a uniform grid. Also, a hybrid rendering pipeline that speeds up the overall rendering performance by exploiting the mobile-device CPU and GPU is presented.

A Novel Method for Material Rendering and Real Measurement of Thickness Using Ultrasound (초음파를 이용한 실측 두께 측정과 재질 렌더링)

  • Choi, Taeyoung;Chin, Seongah
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.190-197
    • /
    • 2014
  • In this paper, we present a method for optical parameter-based material rendering with measuring the thickness of a material using ultrasonic waves. Thickness is an important element in determining the reflectance and transmittance of a material along with its optical characteristics and plays a crucial role in more realistic object rendering. In studies conducted thus far, thickness has been measured and used for rendering. The proposed method is a novel method attempted for the first time ever to render a material considering the thickness of a material whose thickness cannot be measured by visual assessment, using ultrasonic waves. It was implemented by measuring the sound velocity of the reference sample and applying the results to the thickness measurement of other objects that have the same characteristics. The characteristics of the objects measured are reflected in the quality of the final rendering, thus verifying the importance of thickness in rendering.