• Title/Summary/Keyword: Rendering quality

Search Result 247, Processing Time 0.031 seconds

Scattered Light Representation in Accordance with the Material Using Scatterer Template in Volume Rendering (볼륨 렌더링에서 산란자 템플릿을 이용한 재질별 산란광 표현)

  • Lee, Byeong-Joon;Kwon, Koojoo;Shin, Byeong-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.677-684
    • /
    • 2016
  • For realistic rendering volume to calculate the light effects as well as the shade is essential. In order to produce the high quality of the resulting image, it is necessary to represent a global illumination, and it should be considered an indirect effect of the direct impact and scattering of light. It requires a lot of resources in order to perform this operation and, in particular, is very expensive when large amounts of data to be rendered as a volume data is consumed. In this paper, we generate a scatterer template according to the physical laws for each material. Considering that each object having material property stores photons of the template based on the Lambert illumination model. When the volume rendering in this paper, using the photon is stored in the template, based on the voxel to be sampled within the examination volume occluded, and it represents the global illumination of the scattering. Because the materials produced by the template requires a less resource only if comprised of a complex material, a simple operation can be expressed within the scattering volume at a low cost through.

A Study on the Effective Image Sequence Format in 3D Animation Production (3D 애니메이션 제작에 있어서 효율적인 Image Sequence format에 관한 연구)

  • Kim Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.131-136
    • /
    • 2005
  • In 3D animation rendering process, Although we can render the output as a movie file format, most productions use image sequences in their rendering pipelines. This Image Sequence rendering process is extremely important step in final compositing in movie industries. Although there are various type of making image rendering processes, TGA format is one of most widely used bitmap file formats using in industries. People may ask TGA format is most suitable for in any case. As we know 3D softwares have their own image formats. so we need to testify on this. In this paper, we are going to focus on Alias' 3D package software called MAYA which we will analyze of compressing image sequence, Image quality, supporting Alpha channels in compositing, and Z-depth Information. The purpose of this paper is providing to 3D Pipeline as a guideline about effective image sequence format.

  • PDF

A Stylized Font Rendering System for Black/White Comic Book Generation (흑백 만화 제작을 위한 스타일 폰트 설계 시스템)

  • Lee, Jeong-Won;Ryu, Dong-Sung;Park, Soo-Hyun;Cho, Hwan-Gue
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.75-86
    • /
    • 2008
  • Black/white comic rendering is one of the researches in the field of non-photorealistic rendering(NPR). Black/white comics have been produced manually as yet. But these previous systems require lots of time and manual work. So we propose the COmics Rendering system on VIdeo Stream (CORVIS) which transforms video streams into black/white comic cuts. Stylized font, one of comic representations, can be used to express onomatopoeic words and mimetic dialogue exaggeratively. But current comic generation systems do not provide enough effects of stylized font. This paper proposes a model for stylized fonts to express various effects. Effects of stylized fonts we proposed include geometric deformations. Thus we could represent stylized fonts on the still cut of movies and the background texture on a cuts of plain black/white comics. The final quality of our system produced is good enough to compare with manual black/white comics.

A study on the Performance of Hybrid Normal Mapping Techniques for Real-time Rendering

  • ZhengRan Liu;KiHong Kim;YuanZi Sang
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.361-369
    • /
    • 2023
  • Achieving realistic visual quality while maintaining optimal real-time rendering performance is a major challenge in evolving computer graphics and interactive 3D applications. Normal mapping, as a core technology in 3D, has matured through continuous optimization and iteration. Hybrid normal mapping as a new mapping model has also made significant progress and has been applied in the 3D asset production pipeline. This study comprehensively explores the hybrid normal techniques, analyzing Linear Blending, Overlay Blending, Whiteout Blending, UDN Blending, and Reoriented Normal Mapping, and focuses on how the various hybrid normal techniques can be used to achieve rendering performance and visual fidelity. performance and visual fidelity. Under the consideration of computational efficiency, visual coherence, and adaptability in different 3D production scenes, we design comparative experiments to explore the optimal solutions of the hybrid normal techniques by analyzing and researching the code, the performance of different hybrid normal mapping in the engine, and analyzing and comparing the data. The purpose of the research and summary of the hybrid normal technology is to find out the most suitable choice for the mainstream workflow based on the objective reality. Provide an understanding of the hybrid normal mapping technique, so that practitioners can choose how to apply different hybrid normal techniques to the corresponding projects. The purpose of our research and summary of mixed normal technology is to find the most suitable choice for mainstream workflows based on objective reality. We summarized the hybrid normal mapping technology and experimentally obtained the advantages and disadvantages of different technologies, so that practitioners can choose to apply different hybrid normal mapping technologies to corresponding projects in a reasonable manner.

Gradient Estimation for Progressive Photon Mapping (점진적 광자 매핑을 위한 기울기 계산 기법)

  • Donghee Jeon;Jeongmin Gu;Bochang Moon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.141-147
    • /
    • 2024
  • Progressive photon mapping is a widely adopted rendering technique that conducts a kernel-density estimation on photons progressively generated from lights. Its hyperparameter, which controls the reduction rate of the density estimation, highly affects the quality of its rendering image due to the bias-variance tradeoff of pixel estimates in photon-mapped results. We can minimize the errors of rendered pixel estimates in progressive photon mapping by estimating the optimal parameters based on gradient-based optimization techniques. To this end, we derived the gradients of pixel estimates with respect to the parameters when performing progressive photon mapping and compared our estimated gradients with finite differences to verify estimated gradients. The gradient estimated in this paper can be applied in an online learning algorithm that simultaneously performs progressive photon mapping and parameter optimization in future work.

Cell-Based Wavelet Compression Method for Volume Data (볼륨 데이터를 위한 셀 기반 웨이브릿 압축 기법)

  • Kim, Tae-Yeong;Sin, Yeong-Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1285-1295
    • /
    • 1999
  • 본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.

Development and Performance Property Investigation of Lighting System using Plastic Optical Fiber (플라스틱 광섬유를 이용한 조명시스템 개발과 특성 분석)

  • Shin, Sang-Uk;Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.25-32
    • /
    • 2010
  • Compared to general lighting method, the lighting system that uses optic fiber can provide only the visible light of good quality to subject by eliminating ultraviolet ray and infrared ray. Thanks to this merit, it is possible to prevent the hard phenomenon of subject caused by ultraviolet ray and infrared ray and to provide the agreeable light environment. This study developed indoors illumination system of high color rendering on the basis of plastic optic fiber with excellent optical property and processing to substitute halogen lamp which has been used for excellent color rendering in spite of low efficiency and short life. Producing pilot product of the designed illumination system and evaluating the property of electric and optical property, ultraviolet ray radiation quantity and temperature property, this study verified the excellence of suggested lighting system of plastic optic fiber.

Paint Simulation System Representing the Paint Characteristics Reflecting Opinions of Audiences (감상자의 견해가 반영된 물감 특징을 표현하는 물감 시뮬레이션 시스템)

  • You, Mi
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.906-914
    • /
    • 2014
  • There are many studies to create realistic paint effects and the research area still has attracted attention in these days. However, the consideration for the characteristics of the real paint effects from the point of viewers is not enough. In this paper, we extract the important paint features and survey the importance values. Based on the survey results, we suggest a new paint system. The paint system utilizes the paint simulation that reflects viscoelasticity and mixing suggested by You et al. (2013) and proposes the paint rendering method that represents the details of a paint, a solvent, and pigments. We survey the quality of our results and prove that our paint system is superior to the previous studies.

Pre-construction Simulation of Precast Bridge Piers and Quality Management using Augmented Reality (증강현실 기반의 프리캐스트 교각의 사전시공 시뮬레이션 및 시공성 정밀도 관리방안)

  • Park, Seong-Jun;Dang, Ngoc-Son;Yoon, Do-Sun;Lon, Sokanya;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.8 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • Geometry control of precast members is the most important technology for modular construction. In this paper, image-based modeling and rendering (IBMR) technology was adopted for 3D modeling of precast elements. It is necessary to use match-casting method for precast post-tensioned column assembly. Preassembly using 3D models created by image processing can minimize construction error. Augmented reality devices are used to check the geometry of the segment. Laboratory-scale tests were performed. The proposed process has been applied to the real precast bridge pier segments.

A Vector Graphic Method for Portrait Drawing (벡터 그래픽스를 이용한 초상화의 작성 방법)

  • 박삼진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-31
    • /
    • 1999
  • One of the non-photorealistic rendering method, a drawing technique which uses only fine curves and dashed line, is widely employed in an knots and post stamps printing. Engraving of the curves and lines are traditionally performed by human engravers which leads to low productivity in printing preparation. As an effort to improve productivity and quality, a drawing automation method which can easily produce a portrait composed of vector data for laser or chemical engraving is proposed. The method shows that it is possible to draw a portrait by controling the width and length of predefined fine lines according to the gray scales a the end points of each fine lines. A gradually controled weighting factor method is proposed in addition to the author previous works to prevent undesirable boundaries in an identical texture region. User interface functions of a commercial CAD system are heavily employed to exploit the presented method.

  • PDF