• 제목/요약/키워드: Renal proximal tubular

검색결과 88건 처리시간 0.029초

신세뇨관 산증 (Renal Tubular Acidosis)

  • 박혜원
    • Childhood Kidney Diseases
    • /
    • 제14권2호
    • /
    • pp.120-131
    • /
    • 2010
  • Renal tubular acidosis (RTA) is a metabolic acidosis due to impaired excretion of hydrogen ion, or reabsorption of bicarbonate, or both by the kidney. These renal tubular abnormalities can occur as an inherited disease or can result from other disorders or toxins that affect the renal tubules. Disorders of bicarbonate reclamation by the proximal tubule are classified as proximal RTA, whereas disorders resulting from a primary defect in distal tubular net hydrogen secretion or from a reduced buffer trapping in the tubular lumen are called distal RTA. Hyperkalemic RTA may occur as a result of aldosterone deficiency or tubular insensitivity to its effects. The clinical classification of renal tubular acidosis has been correlated with our current physiological model of how the nephron excretes acid, and this has facilitated genetic studies that have identified mutations in several genes encoding acid and base ion transporters. Growth retardation is a consistent feature of RTA in infants. Identification and correction of acidosis are important in preventing symptoms and guide approved genetic counseling and testing.

Adult Idiopathic Renal Fanconi Syndrome: A Case Report

  • Park, Dae Jin;Jang, Ki-Seok;Kim, Gheun-Ho
    • 대한전해질대사연구회지
    • /
    • 제16권2호
    • /
    • pp.19-22
    • /
    • 2018
  • Renal Fanconi syndrome (RFS) is caused by generalized proximal tubular dysfunction and can be divided into hereditary and acquired form. Adult-onset RFS is usually associated with drug toxicity or systemic disorders, and modern molecular genetics may explain the etiology of previous idiopathic cases of RFS. Here, we report the case of a 52-year-old woman with RFS whose etiology could not be identified. She presented with features of phosphaturia, renal glucosuria, aminoaciduria, tubular proteinuria, and proximal renal tubular acidosis. Her family history was unremarkable, and previous medications were nonspecific. Her bone mineral density was compatible with osteoporosis, serum intact parathyroid hormone level was mildly elevated, and 25(OH) vitamin D level was insufficient. Her blood urea nitrogen and serum creatinine levels were 8.4 and 1.19 mg/dL, respectively (estimated glomerular filtration rate, $53mL/min/1.73m^2$). Percutaneous renal biopsy was performed but revealed no specific renal pathology, including mitochondrial morphology. No mutation was detected in EHHADH gene. We propose the possibility of involvement of other genes or molecules in this case of adult RFS.

Changes in Renal Brush-Border Sodium-Dependent Transport Systems in Gentamicin-Treated Rats

  • Suhl, Soong-Yong;Ahn, Do-Whan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.403-411
    • /
    • 1997
  • To elucidate the mechanism of gentamicin induced renal dysfunction, renal functions and activities of various proximal tubular transport systems were studied in gentamicin-treated rats (Fisher 344). Gentamicin nephrotoxicity was induced by injecting gentamicin sulfate subcutaneously at a dose of 100 $mg/kg{\cdot}day$ for 7 days. The gentamicin injection resulted in a marked polyuria, hyposthenuria, proteinuria, glycosuria, aminoaciduria, phosphaturia, natriuresis, and kaliuresis, characteristics of aminoglycoside nephropathy. Such renal functional changes occurred in the face of reduced GFR, thus tubular transport functions appeared to be impaired. The polyuria and hyposthenuria were partly associated with a mild osmotic diuresis, but mostly attributed to a reduction in free water reabsorption. In renal cortical brush-border membrane vesicles isolated from gentamicin-treated rats, the $Na^+$ gradient dependent transport of glucose, alanine, phosphate and succinate was significantly attenuated with no changes in $Na^+-independent$ transport and the membrane permeability to $Na^+$. These results indicate that gentamicin treatment induces a defect in free water reabsorption in the distal nephron and impairs various $Na^+-cotransport$ systems in the proximal tubular brush-border membranes, leading to polyuria, hyposthenuria, and increased urinary excretion of $Na^+$ and other solutes.

  • PDF

Effects of High Glucose on Na,K-ATPase and Na/glucose Cotransporter Activity in Primary Rabbit Kidney Proximal Tubule Cells

  • Han, Ho-Jae
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.69-80
    • /
    • 1995
  • Renal proximal tubular hypertrophy and hyperfunction are known to be early manifestations of experimental and human diabetes. As the hypertrophy and hyperfunction have been suggested to be central components in the progression to renal failure, an understanding of their underlying causes is potentially important for the development of therapy. A primary rabbit kidney proximal tubule cell culture system was utilized to evaluate the possibility that the renal proximal tubular hypertrophy and hyperfunction observed in vivo in diabetes mellitus, can be attributed to effects of elevated glucose levels on membrane transport systems. Primary cultures of rabbit proximal tubules, which achieved confluence at 10 days, exhibited brush-border characteristics typical of proximal tubular cells. Northern analysis indicated $2.2{\sim}2.3$ and 2.0 kb Na/glucose cotransporter RNA species appeared in fresh and cultured proximal tubule cells after confluence, repectively. The cultured cells showed reduced Na/glucose cotransporter activity compared to fresh proximal tubules. Primary cultured proximal tubule cells incubated in medium containing 20 mM glucose have reduced ${\alpha}-MG$ transport compared to cells grown in 5 mM glucose. In the proximal tubule cultures incubated in medium containing 5 mM or 20 mM glucose, phlorizin at 0.5 mM inhibited 0.5 mM ${\alpha}-MG$ uptake by 84.35% or 91.85%, respectively. The uptake of 0.5 mM ${\alpha}-MG$ was similarly inhibited by 0.1 mM ouabain (41.97% or 48.03% inhibition was observed, respectively). In addition, ${\alpha}-MG$ uptake was inhibited to a greater extent when $Na^{+}$ was omitted from the uptake buffer (81.86% or 86.73% inhibition was observed, respectively). In cell homogenates derived from the primary cells grown in 5 mM glucose medium, the specific activity of the Na/K-ATPase $(6.17{\pm}1.27\;{\mu}mole\;Pi/mg\;protein/hr)$ was 1.56 fold lower than the values in cell homogenates treated with 360 mg/dl D-glucose, 20 mM $(9.67{\pm}1.22\;{\mu}mole\;Pi/mg\;protein/hr)$. Total $Rb^{+}$ uptake occurred at a significantly higher rate (1.60 fold increase) in primary cultured rabbit kidney proximal tubule cell monolayers incubated in 20 mM glucose medium $(10.48{\pm}2.45\;nM/mg\;protein/min)$ as compared with parallel cultures in 5 mM glucose medium. $Rb^{+}$ uptake rate in 5 mM glucose medium was reduced by 28% when the cultures were incubated with 1 mM ouabain. The increase of the $Rb^{+}$ uptake by rabbit kidney proximal tubule cells in 20 mM glucose could be attributed primarily to an increase in the rate of ouabain-sensitive $Rb^{+}$ uptake $(5\;mM\;to\;20\;mM;\;4.68{\pm}0.85\;to\;8.38{\pm}1.37\;nM/mg\;protein/min)$. In conclusion, the activity of the renal proximal tubular Na,K-ATPase is elevated in high glucose concentration. In contrast, the activity of the Nafglucose cotransport system is inhibited.

  • PDF

Decursin derivative-004 protect renal cell damage via p38 MAPK inhibition

  • Shin, Seon-Mi;Kim, Hyeon-Ho;Kim, Ik-Hwan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.337.1-337.1
    • /
    • 2002
  • Hypertrophy and the alteration of renal cell growth have been reported as early abnormality in diabetic nephropathy. However, the effects ot high PKCglucose and its action mechanism in renal proximal tubular cell (PTC) have not been elucidated. High glucose condition increases diacyl glycerol (DAG) and activates protein kinase C (PKC) in renal tubular cells. The PKC activates mitogen-activated protein kinases (MAPK), such as extracellular regulated kinase (ERK) and p38 MAPK. (omitted)

  • PDF

Effects of Dopamine on Intracellular pH in Opossum Kidney Cells

  • Kang, Kyung-Woo;Kim, Yung-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권3호
    • /
    • pp.187-191
    • /
    • 2003
  • $Na^+/H^+$ exchanger (NHE) has a critical role in regulation of intracellular pH (pHi) in the renal proximal tubular cells. It has recently been shown that dopamine inhibits NHE in the renal proximal tubules. Nevertheless, there is a dearth of information on the effects of long-term (chronic) dopamine treatment on NHE activities. This study was performed to elucidate the pHi regulatory mechanisms during the chronic dopamine treatments in renal proximal tubular OK cells. The resting pHi was greatly decreased by chronic dopamine treatments. The initial rate and the amplitude of intracellular acidification by isosmotical $Na^+$ removal from the bath medium in chronically dopamine-treated cells were much smaller than those in control. Although it seemed to be attenuated in $Na^+$-dependent pH regulation system, $Na^+$-dependent pHi recovery by NHE after intracelluar acid loading in the dopamine-treated groups was not significantly different from the control. The result is interpreted to be due to the balance between the stimulation effects of lower pHi on the NHE activity and counterbalance by dopamine. Our data strongly suggested that chronic dopamine treatment increased intrinsic intracellular buffer capacity, since higher buffer capacity was induced by lower resting pHi and this effect could attenuate pHi changes under extracellular $Na^+$-free conditions in chronically dopamine-treated cells. Our study also demonstrated that intracellular acidification induced by chronic dopamine treatments was not mediated by changes in NHE activity.

개에서 신성 당뇨 일례 (Renal Glucosuria in a Dog)

  • 강지훈;조민행;김민준;장동우;나기정;양만표
    • 한국임상수의학회지
    • /
    • 제22권4호
    • /
    • pp.420-423
    • /
    • 2005
  • A 2-year-old 16-kg, intact female lindo was presented with weight loss and poor hair coat. Abnormal serum biochemical values included mild hypokalemia (3.9 mmol/L, reference range 4.37 to 5.35 mmol/L) and mild hyperglycemia (124 mg/dl, reference range 65 to 118 mg/dl). in the complete blood count and diagnostic imaging examination, abnormal changes wer not seen. The analysis of urine sample obtained from cystocentesis revealed glucosuria (> 100 mg/dl) and mild proteinuria. Repeated analysis after admission showed persistent glucosuria and hypokalemia. But blood glucose values did not exceed the renal threshold fur glucose reabsorption. To differentiate cause of the glucosuria, the glucose tolerance test and the low-dosage dexamethasone suppression test were indicated. Results of both tests were normal. In addition, the serum total thyroxine $(T_4)$ value was within normal range. The arterial blood gas analysis showed no remarkable changes. The fractional reabsorption rates of amino acids and phosphorus were calculated above $97\%$. Based on these findings, the dog was diagnosed as renal glucosuria due to proximal renal tubular dysfunction. But this persistent renal glucosuria with hypokalemia may be the initial sign of Fanconi's syndrome or proximal renal tubular acidosis.

HK-2 세포에서 카드뮴 세포독성에 대한 밀몽화(密蒙花)의 효과 (Effect of Buddleja officinalis on Cadmium-induced Cytototoxicty in HK-2 Cells)

  • 주성민;강민수;전병훈
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.441-445
    • /
    • 2012
  • Cadmium is an important occupational and environmental pollutant that damages various organs, especially renal proximal tubular cells. We examined the effect of aqueous extract of Buddleja officinalis (ABO) on cadmium chloride ($CdCl_2$)-induced cytotoxicity in HK-2 human renal proximal tubular cells. HK-2 cells were preincubated with ABO (50, 100, 200 and 400 ${\mu}g/ml$) for 3 hr and then treated with 10 ${\mu}M$ $CdCl_2$ for 24 hr. The effect of ABO on $CdCl_2$-induced cytotoxicity in HK-2 cells was investigated by using MTT assay, morphological observation, flow cytometric analysis and Western blot. The results of the MTT assay and morphological observation indicated that $CdCl_2$-induced cytotoxicity was prevented by pretreatment with ABO. In flow cytometric analysis, ABO reduced sub-G1 peak (apoptotic peak) in $CdCl_2$-treated cells. $CdCl_2$-induced procaspase-3 proteolysis and PARP cleavage reduced by pretreatment with ABO. These results suggest that ABO effectively inhibited $CdCl_2$-induced cytotoxicity in HK-2 cells.

A Korean patient with Fanconi-Bickel Syndrome Presenting with Transient Neonatal Diabetes Mellitus and Galactosemia : Identification of a Novel Mutation in the GLUT2 Gene

  • Yoo, Han-Wook;Seo, Eul-Ju;Kim, Gu-Hwan
    • 대한유전성대사질환학회지
    • /
    • 제1권1호
    • /
    • pp.23-27
    • /
    • 2001
  • Fanconi-Bickel Syndrome (FBS) is a rare autosomal recessive disorder of carbohydrate metabolism recently demonstrated to be caused by mutations in the GLUT 2 gene for the glucose transporter protein 2 expressed in liver, pancreas, intestine, and kidney. This disease is characterized by hepatorenal glycogen accumulation, both fasting hypoglycemia as well as postprandial hyperglycemia and hyperglactosemia, and generalized proximal renal tubular dysfunctions. We report the first Korean patient with FBS diagnosed based on clinical manifestations and identification of a novel mutation in the GLUT 2 gene. She was initially diagnosed having a neonatal diabetes mellitus due to hyperglycemia and glycosuria at 3 days after birth. In addition, newborn screening for galactosemia revealed hypergalactosemia. Thereafter, she has been managed with lactose free milk, insulin therapy. However, she failed to grow and her liver has been progressively enlarging. Her liver functions were progressively deteriorated with increased prothrombin time. Liver biopsy done at age 9 months indicated micronodular cirrhosis with marked fatty changes. She succubmed to hepatic failiure with pneumonia at 10 months of age. Laboratory tests indicated she had generalized proximal renal tubular dysfuctions; renal tubular acidosis, hypophosphatemic rickets, and generalized aminoaciduria. Given aforementioned findings, the diagnosis of FBS was appreciated at age of 2 months. The DNA sequencing analysis of the GLUT 2 gene using her genomic DNA showed a novel mutation at 5th codon; Lysine5 Stop (K5X).

  • PDF

Effect of Cisplatin on $Na^+/H^+$ Antiport in the OK Renal Epithelial Cell Line

  • Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.69-76
    • /
    • 1998
  • Cis-diamminedichloroplatinum II (cisplatin), an effective antitumor agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin in the renal proximal tubular transport system, OK cell line was selected as a cell model and $Na^+/H^+$ antiport activity was evaluated during a course of cisplatin treatment. The cells grown to confluence were treated with cisplatin for 1 hour, washed, and incubated for up to 48 hours. At appropriate intervals, cells were examined for $Na^+/H^+$ antiport activity by measuring the recovery of intracellular pH (pHi) after acid loading. Cisplatin of less than 50 ${\mu}M$ induced no significant changes in cell viability in 24 hours, but it decreased the viability markedly after 48 hours. In cells exposed to 50 ${\mu}M$ cisplatin for 24 hours, the $Na^+-dependent$ pHi recovery (i.e., $Na^+/H^+$ antiport) was drastically inhibited with no changes in the $Na^+-independent$ recovery. Kinetic analysis of the $Na^+-dependent$ pHi recovery indicated that the Vmax was reduced, but the apparent Km was not altered. The cellular $Na^+$ and $K^+$ contents determined immediately before the transport measurement appeared to be similar in the control and cisplatin group, thus, the driving force for $Na^+-coupled$ transport was not different. These results indicate that cisplatin exposure impairs the $Na^+/H^+$ antiport capacity in OK cells. It is, therefore, possible that in patients treated with a high dose of cisplatin, proximal tubular mechanism for proton secretion (hence $HCO_3^-$ reabsorption) could be attenuated, leading to a metabolic acidosis (proximal renal tubular acidosis).

  • PDF