• Title/Summary/Keyword: Renal excretion

Search Result 262, Processing Time 0.02 seconds

Infarction of Renal Transplant with Extrarenal Excretion of Tc-99m $MAG_3$ Demonstrated by Renal Scintigraphy (Tc-99m $MAG_3$ 신장스캔에서 신외 배설과 함께 발견된 이식신 경색)

  • Lim, Seok-Tae;Kim, Min-Woo;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.199-201
    • /
    • 2003
  • A 38-year-old woman with end stage renal disease received a living related donor-renal transplant to the right iliac fossa. She developed anuria a week later Tc-99m $MAG_3$ renal scintigraphy demonstrated no perfusion, uptake, or excretion of the radioactive tracer from the renal transplant. The expected area of the renal allograft appeared as a photopenic area with increased rim activity. The gallbladder and bowel activities were observed on delayed images at 24 hours. There was no blood flow within the renal artery on renal doppler examination. This case shows total absence of perfusion and function in the infarcted renal transplant with extrarenal excretion of Tc-99m $MAG_3$ caused by acute renal artery thrombosis.

Effect of renal ischemia on renal function and excretion of lysine, alanine in the rabbit (신장 허혈이 토끼 신기능과 lysine 및 alanine 배설에 미치는 영향)

  • Nam, Yun-jeong;Kim, Yong-keun;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.729-733
    • /
    • 1995
  • This study was carried out to determine the effect of renal ischemia on renal function and excretion of amino acid in rabbit. The animal models of renal ischemia induced experimentally by clamping the renal artery for different lengths of time. These results were summarized as follows: 1. Ischemia for 30 or 60 min produced a polyuria which is accompanied by an increase in $Na^+$ excretion. Glomerular filtration rate (GFR) and p-aminohippurate plasma($C_{PAH}$) were not altered by 30 min of ischemia, indicating that transient ischemia results in a marked tubular dysfuction before a reduction in GFR or renal blood flow. 2. Reabsorption of glucose and amino acids such as alanine and lysine was markedly reduced after 30 min of ischemia, and the effect was more pronounced after 60 min of ischemia.

  • PDF

Mammary and renal excretion of sulphamethomidine in cows (Sulphamethomidine의 젖소에 있어서의 유선과 신장을 통한 배출)

  • Lee, Jang-nag;Kjaersgaard, Per
    • Korean Journal of Veterinary Research
    • /
    • v.7 no.2
    • /
    • pp.51-55
    • /
    • 1967
  • The mammary excretion of suphamethomidine after intravenous and/or oral administration was investigated in cow. The results show that sulphamethomidine is bound to plasma proteins to a great extent (80~90%). Ay a dosage of 60 mg./kg. maximal concenration in plasma of this sulphonamide was reached 7-10 hours after oral dosing. The sulphonamide concentration in plasma slowly declined after both oral and intravenous administration (fig. 1, 2, and 3) The concentration of sulphonamide in milk was very low and the excretion was completed in 7 days after a single oral dose and 5 days after intravenous injection while in the case of blood plasma it was 11 and 7 days, respectively. In addition, the renal excretion of sulphamethomidine was investigated while under continuous intravenous intravenous infusion. The excretion ratios varies according to self depression (table. 1). Blockade of the tubular secretion with diodone lowered the excretion of sulphamethomidine. It is concluded that the renal excretion of sulphamethomidine in cows occurs by filtration by slight tubular secretion and also by a high rate of back diffusion.

  • PDF

RENAL REGULATION OF UREA EXCRETION DURING UREA INFUSION IN ACUTE HEAT EXPOSED BUFFALOES

  • Chaiyabutr, N.;Buranakarl, C.;Loypetjra, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.81-90
    • /
    • 1992
  • Five buffaloes kept in normal ambient temperature ($30^{\circ}C$) showed no significant changes in the heart rate, respiratory rate, packed cell volume, plasma constituents and renal hemodymics during intravenous infusion of urea for 4 h. The rate of urine flow, fractional urea excretion, urinary potassium excretion and osmolar clearance significantly decreased while the renal urea reabsorption markedly increased during urea infusion. The decrease of fractional potassium excretion was concomitant with the reduction of the rate of urine flow and urine pH. In animals exposed to heat ($40^{\circ}C$) the rectal temperature heart rate and respiratory rate significantly increased while no significant changes in GFR and ERPF were observed. An intravenous infusion of urea in heat exposed animals caused the reduction of the rate of urine flow with no changes in renal urea reabsorption, urine pH and fractional electrolyte excretions. During heat exposure, there were marked increases in concentrations of total plasma protein and plasma creatinine whereas plasma inorganic phosphorus concentration significantly decreased. It is concluded that an increase in renal urea reabsorption during urea infusion in buffaloes kept in normal ambient temperature depends on the rate of urine flow which affect by an osmotic diuretic effect of electrolytes. The limitation of renal urea reabsorption in heat stressed animals would be attributed to an increases in either plasma pool size of nitrogenous substance or body metabolism.

Influence of Intracerebroventricular Thiopental Sodium on the Renal Function in Conscious Rabbit (측뇌실내로 투여한 Thiopental Sodium의 가토 신장기능에 미치는 영향)

  • Hong, Ki B.;Cho, Kyung W.
    • The Korean Journal of Physiology
    • /
    • v.19 no.1
    • /
    • pp.35-48
    • /
    • 1985
  • One of most frequently used anesthetic agents is barbiturate derivatives. Pentobarbital or thiopental sodium have been used most frequently in the laboratory or clinical practice. There have been reports on the renal effects of barbiturate anesthesia in human and laboartory animals. Renal effects of thiopental sodium anesthesia, however, are still controversial. One of the discrepancies may be derived from the doses used. It has been reported that subanesthetic small dose of thiopental sodium influences the renal function directly. To clarify possible central effects of very small amounts of thiopental sodium on the renal function, experiments have been done in conscious rabbits. Thiopental sodium was infused into the lateral cerebroventricle for 10 minutes. Intracerebroventricular thiopental sodium induced increased urinary volume, glomerular filtration rate and renal plasma flow by doses of $0.1{\sim}1.0\;mg/10 min/rabbit$. Filtration fractions were not changed. Sodium, chloride and potassium excretions were increased by 0.065 mg/10 min/rabbit of thiopental sodium without significant changes of renal hemodynamics. Higher doses of thiopental sodium $(0.1{\sim}1.0\;mg/10 min/rabbit)$ induced greater increases of electrolytes excretion and renal hemodynamics. Free water clearance was not changed by thiopental sodium, but the fractional excretion of free water showed a tendency of decrease. Fractional excretion of sodium was increased by doses of 0.065 to 1.0 mg of thiopental sodium . Highly significant correlation between the changes of glomerular filtration rate and the changes of sodium excretion were found in the higher doses. Plasma renin concentration (activity) was not changed by the centrally administered thiopental sodium. Intravenous thiopental sodium, 1.0 mg/rabbit, induced no changes of renal function in conscious rabbit. These data suggest that intracerebroyentricular thiopental sodium can increase urinary sodium excretion directly by inhibition of sodium reabsorption in the renal tubules and/or indirectly by increasing the renal hemodynamics.

  • PDF

Effect of Atrial Natriuretic Factor on the Renal Function and Renin Release in Unanesthetized Rabbit (무마취 가토 신장기능에 미치는 Atrial Natriuretic Factor의 영향)

  • Lee, June-K.;Cho, Kyung-W.
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.103-124
    • /
    • 1986
  • Since it has been suggested that atrial receptor may be involved in the mechanism of extracellular volume regulation, it was shown that the granularity of atrial cardiocytes can be changed by water and salt depletion, and that an extract of cardiac atrial tissue, when injected intravenously into anesthetized rats, was shown to cause a large and rapid increase in renal excretion of sodium. Various natriuretic peptides were isolated and synthetized, and the effects were investigated by many workers. Most studies, however, have been carried out under anesthesia and there have teen some controversies over direct effect of the factor on the renal function. Therefore, it was attempted in this study to access the effects of an atrial extract and a synthetic natriuretic factor in unanesthetized rabbits. Intrarenal arterial infusion of atrial extract caused a rapid increase of urinary volume and excretion of sodium. Glomerular filtration rate and renal plasma flow were both increased with no change in filtration fraction. The ventricular extract produced no change in urinary excretion of electrolytes, nor in renal hemodynamics. Intrarenal infusion of synthetic atrial natriuretic factor caused increases of renal excretory rate of sodium, chloride and potassium, and $FE_{Na}$. Glomerular filtration rate, renal plasma flow increased. And free water clearance also increased. Accentuated excretory function correlated well with increased glomerular filtration rate and renal plasma flow during infusion and for 10 minutes following the cessation of the infusion. Renin secretion rate decreased during constant infusion of atrial natriuretic factor. However, no correlation was found with the changes in glomerular filtration rate, renal plasma flow, or urinary excretion of sodium. These results suggest that atrial extract or atrial natriuretic factor induces changes in renal hemodynamics, as in excretion of electrolytes either indirectly through hemodynamic changes or directly by inhibiting tubular reabsorption. At the same time, renin secretory function is affected by the factor possibly through an unknown mechanism.

  • PDF

Renal Handling of Sodium and Potassium in Cadmium Exposed Rats

  • Kim, Yung-Kyu;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.503-510
    • /
    • 1998
  • Effects of cadmium exposure on renal $Na^+$ and $K^+$ transports were studied in rats. During the course of cadmium treatment (2 mg Cd/kg/day, s.c. injections for 3 weeks) renal tubular transports of $Na^+$ and $K^+$ were evaluated by lithium clearance technique. During the early phase (first week) of cadmium treatment, urinary $Na^+$ excretion decreased drastically and this was due to an increased $Na^+$ reabsorption both in the proximal and distal nephrons. During the late phase (third week) of cadmium treatment, filtered $Na^+$ load was decreased by reduction in GFR, but the renal $Na^+$ excretion returned to the control level due to impaired $Na^+$ transport in the proximal tubule. Urinary excretion of $K^+$ did not change during the early phase, but it rose markedly during the late phase of cadmium treatment. These results indicate that a light cadmium intoxication induces a $Na^+$ retention, and a heavy intoxication results in a $K^+$ loss. Possible mechanisms for these changes are discussed.

  • PDF

RENAL REGULATION OF UREA EXCRETION IN SWAMP BUFFALO FED WITH HIGH PROTEIN SUPPLEMENTATION

  • Chaiyabutr, N.;Chanpongsang, S.;Loypetjra, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.275-280
    • /
    • 1995
  • The effect of supplemented high protein diet intake on renal urea regulation in swamp buffalo was carried out in the present experiment Five swamp buffalo heifers weighing between 208-284 kg were used for this study. The animals were fed with a supplementary high protein diet and renal function and kinetic parameters for urea excretion were measured. This was compared to a control period where the same animals had been fed only with paragrass and water hyacinth. For 2 months the same animals were fed a mixed of paragrass, water hyacinth plus 2 kgs of a high protein supplement (protein 18.2% DM basis) per head per day. In comparison to the control period, there were no differences in the rate of urine flow, glomerular filtration rate (GFR), effective renal plasma flow (ERPF), plasma urea concentration and filtered urea. In animals supplemented with high protein intake mean values of urea clearance, excretion rate and the urea urine/plasma concentration ratio markedly increased (p < 0.05) while renal urea reabsorption significantly decreased from 40% to 26% of the quantity filtered. In this same study group urea space distribution and urea pool size increased which coincided with an increase in plasma volume (p < 0.05). Plasma protein decreased while plasma osmolarity increased (p < 0.05). Both urea turnover rate and biological half-life of $^{14}C$-urea were not affected by a supplementary high protein intake. The results suggest that animals supplemented with high protein diets are in a state of dynamic equilibrium of urea which is well balanced between urea excreted into the urine and the amount synthesized. The limitation for renal tubular urea reabsorption would be a change in extra-renal factors with an elevation of the total pool size of nitrogenous substance.

Effect of Vasoactive Intestinal Peptide on Renal Function in Rats (Vasoactive Intestinal Peptide(VIP)의 백서신장기능(白鼠腎臟機能)에 미치는 영향(影響))

  • Kim, Suhn-Hui;Cho, Kyung-W
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.159-163
    • /
    • 1982
  • Vasoactive intestinal peptide (VIP) found in duodenal mucosa originally has been suggested as a neurotransmitter. Its localization, however, now known, is not limited to the gastrointestinal tract, but scattered at many different kinds of tissues, smooth muscles, endocrine gland and exocrine gland as well as central and peripheral neural tissues. To investigate the effect of VIP on renal function, an experiment has been done in anesthetized male rats. The results obtained were: 1) Urinary output and creatinine clearance decreased significantly during the period of infusion of VIP, 2.0ug/rat/7minutes. 2) Urinary excretion of sodium, potassium and chloride decreased but without significance by infusion of VIP. 3) Blood pressure, systolic and diastolic, decreased by VIP administered intravenously in the period of infusion. 4) Changes of urinary output, sodium and chloride excretion was correlated with changes of creatinine clearance. The above data suggest that VIP administered intravenously can suppress the renal hemodynamics indirectly, and also decrease electrolyte excretion through its renal hemodynamic change.

  • PDF

Influence of Debrisoquine on Renal Function of Dogs (Debrisoquine이 개의 신장기능에 미치는 영향)

  • 임동윤
    • YAKHAK HOEJI
    • /
    • v.25 no.1
    • /
    • pp.15-25
    • /
    • 1981
  • This study was attempted to investigate the action of debrisoquine, a sympathetic blocking agent presently employed in treating hypertension, on renal function and to elucidate the mechanism of its action. Debrisoquine, given intravenously, elicited increased urine flow, osmolar and free water clearances, along with marked increases in excretion of both sodium and potassium. Glomerular filtration rate also increased, but renal plasma flow tended to decrease, so that the filtration fraction tended to increase. Rates of reabsorption of sodium and potassium in renal tubules were also significantly diminished. The diuresis induced by debrisoquine was completely blocked by treatment with phentolamine and reserpine, and also markedly inhibited by acute renal denervation. Debrisoquine, when injected directly into a renal artery, produced antidiuretic effect and a reduction in urinary excretion of sodium and potassium, along with diminished renal plasma flow and increased filtration fraction. The above observations indicate that debrisoquine, when given intravenously, induces diuresis in the dog as a result of both diminished tubular reabsorption of electrolytes and of renal hemodynamic changes, which seem to be related to its inhibitory action of catecholamine-release from the sympathetic nerve endings.

  • PDF