• Title/Summary/Keyword: Removal process

Search Result 4,458, Processing Time 0.034 seconds

Parametric study for enhanced performance of Cu and Ni electrowinning

  • Kim, Joohyun;Kim, Han S.;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • In this study, we performed an electrowinning process for effective removal of metals (Cu and Ni) in solution and their recovery as solid forms. A complete removal of Cu and Ni (1,000 mg/L) was observed during four times recycling test, indicating that our electrowinning system can ensure the efficient metal removal with high stability and durability. In addition, we investigated effect of operation parameters (i.e., concentration of boric acid only for Ni, variation of pH, concentration of electrolyte ($H_2SO_4$), and cell voltage) on the efficiency of metal removal (Cu and Ni) during the electrowinning. The addition of boric acid significantly enhanced removal efficiency of Ni as the concentration of boric acid increased up to 10 g/L. Compared to negligible pH effect (pH 1, 2, and 4) on the Cu removal, we observed the increase in removal efficiency of Ni as the pH increased from 1 to 4. The electrolyte concentration did not significantly influence the removal of Cu and Ni in this study. We also obtained great removal rates of Cu and Ni at 2.5 V and 4.0 V, which were much faster than those at lower voltages. Finally, almost 99% of each Cu and Ni (1,000 mg/L) was selectively removed from the mixture of metals by adjusting pH and addition of boric acid after the completion of Cu removal. The findings in this study can provide a fundamental knowledge about effect of important parameters on the efficiency of metal recovery during the electrowinning.

Pilot Study Analysis of Three Different Processes in Drinking Water Treatment

  • Kim, Dae-Ho;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.237-242
    • /
    • 2011
  • In this study, three pilot-scale plants with the capacity 30 $m^3$/day were designed and set up to treat reservoir water for the production of drinking water. Three treatment processes were compared in the pilot testing: process 1 (coagulation- flocculation- sedimentationsand filtration- ozone- BAC); process 2 (coagulation- flocculation- sedimentation- microfiltration-ozone- BAC); and process 3 (coagulation- flocculation- sedimentation- sand filtration- GAC). The quality of water has been evaluated on the basis of selected parameters such as turbidity, color, consumption of $KMnO_4$, dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), geosmin and 2-MIB. A detailed assessment of performance was carried out during a five months operation. Process 2 was found to have better removal efficiency of DOC, THMFP, geosmin and 2-MIB than process 1 and process 3 under identical conditions, although the removal rate of color was found to be the same in the three cases.

Modeling of Nonlinear SBR Process for Nitrogen Removal Using Fuzzy Systems (퍼지 시스템을 이용한 비선형 질소제거 SBR 공정의 모델링)

  • Kim, Dong-Won;Park, Jang-Hyun;Lee, Ho-Sik;Park, Young-Whan;Park, Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.190-194
    • /
    • 2004
  • This paper shows the application of fuzzy system for a modeling of nonlinear biochemical process. A wastewater treatment process for nitrogen removal in a sequencing batch reactor (SBR) is presented and fuzzy systems with different consequent polynomials in the fuzzy rules to model and identify the oxidation reduction potential (ORP) of the process are introduced. The paper compares, analyzes the results of fuzzy modeling, and shows the nonlinear process can be modeled reasonably well by the present scheme.

Astudy on Treatment of Livestock Wastewater using Coagulation and Fenton Oxidation Process (응집 및 fenton 산화공정을 연계한 축산폐수처리에 관한 연구)

  • Cho, Chang-Woo;Ryou, Jae-Woong;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.610-614
    • /
    • 2004
  • The objective of this study was to remove organics and color in livestock wastewater using coagulation and Fenton oxidation process. After coagulation process as $1^{st}$ treatment, organics in $1^{st}$ treatment water were removed by using OH radical produced in Fenton oxidation process. Removal efficiencies of $COD_{Mn}$ and color were 87.2% and 95.7% separately. At that time, the ratio of $Fe^{2+}/H_2O_2$ was 0.8~1.0, and range of reaction pH was effective at the pH of 3.5~3.8. The Reaction time of 120min more than 60min or 90min was sufficient in Fenton process. Removal efficiency of organics was higher two- or multi-stage treatment than one-stage treatment.

Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide (과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.

W Chemical Mechanical Polishing (CMP) Characteristics by oxidizer addition (산화제 첨가에 따른 W-CMP 특성)

  • Park, Chang-Jun;Seo, Yong-Jin;Lee, Kyoung-Jin;Jeong, So-Young;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.46-49
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5% hydrogen peroxide such as $Fe(NO_3)_3$, $H_2O_2$, and $KIO_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of $Al_3O_3$ particles in presence of surfactant stabilizing the slurry.

  • PDF

Evaluation of Al CMP Slurry based on Abrasives for Next Generation Metal Line Fabrication (연마제 특성에 따른 차세대 금속배선용 Al CMP (chemical mechanical planarization) 슬러리 평가)

  • Cha, Nam-Goo;Kang, Young-Jae;Kim, In-Kwon;Kim, Kyu-Chae;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.731-738
    • /
    • 2006
  • It is seriously considered using Al CMP (chemical mechanical planarization) process for the next generation 45 nm Al wiring process. Al CMP is known that it has a possibility of reducing process time and steps comparing with conventional RIE (reactive ion etching) method. Also, it is more cost effective than Cu CMP and better electrical conductivity than W via process. In this study, we investigated 4 different kinds of slurries based on abrasives for reducing scratches which contributed to make defects in Al CMP. The abrasives used in this experiment were alumina, fumed silica, alkaline colloidal silica, and acidic colloidal silica. Al CMP process was conducted as functions of abrasive contents, $H_3PO_4$ contents and pressures to find out the optimized parameters and conditions. Al removal rates were slowed over 2 wt% of slurry contents in all types of slurries. The removal rates of alumina and fumed silica slurries were increased by phosphoric acid but acidic colloidal slurry was slightly increased at 2 vol% and soon decreased. The excessive addition of phosphoric acid affected the particle size distributions and increased scratches. Polishing pressure increased not only the removal rate but also the surface scratches. Acidic colloidal silica slurry showed the highest removal rate and the lowest roughness values among the 4 different slurry types.

Micellar Enhanced Ultrafiltration (MEUF) and Activated Carbon Fiber (ACF) Hybrid Processes for the Removal of Cadmium from an Aqueous Solution

  • Rafique, Rahman Faizur;Lee, Seunghwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.775-780
    • /
    • 2014
  • Micellar enhanced ultrafiltration (MEUF) was used to remove cadmium from an aqueous solution using sodium dodecyl sulfate (SDS) as a surfactant. Operational parameters such as initial permeate flux, retentate pressure, initial cadmium concentration, pH solution, molecular weight cut-off (MWCO), and molar ratio of cadmium to SDS were investigated. Removal efficiency of cadmium from an aqueous solution increased with an increase of retentate pressure, pH solution and molar ratio of cadmium to SDS, and decreased with an increase of initial permeate flux. Higher removal efficiency of cadmium from the aqueous solution was achieved using lower MWCO (smaller membrane pore size). Under optimized experimental condition, cadmium removal efficiency reached 74.6 % within an hour. Using MEUF-ACF hybrid process the removal efficiency of both cadmium and SDS was found to be over 90%.

An Improved Element Removal Method for Evolutionary Structural Optimization

  • Han, Seog-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.913-919
    • /
    • 2000
  • The purpose of this study was to develop a new element removal method for ESO (Evolutionary Structural Optimization), which is one of the topology optimization methods. ESO starts with the maximum allowable design space and the optimal topology emerges by a process of removal of lowly stressed elements. The element removal ratio of ESO is fixed throughout topology optimization at 1 or 2%. BESO (bidirectional ESO) starts with either the least number of elements connecting the loads to the supports, or an initial design domain that fits within the maximum allowable domain, and the optimal topology evolves by adding or subtracting elements. But the convergence rate of BESO is also very slow. In this paper, a new element removal method for ESO was developed for improvement of the convergence rate. Then it was applied to the same problems as those in papers published previously. From the results, it was verified that the convergence rate was significantly improved compared with ESO as well as BESO.

  • PDF

Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive (HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.