• Title/Summary/Keyword: Removal process

Search Result 4,458, Processing Time 0.034 seconds

Evaluation of Phosphorus Removal Efficiency at Various Coagulation Conditions Using Polyaluminum Chloride with Different Al Contents (Al 함량이 다른 PAC를 이용한 응집 조건 별 인 제거효율 평가)

  • Jeong-Hak Choi;Geon-Gon Yoon;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.10
    • /
    • pp.731-739
    • /
    • 2023
  • In this study, lab-scale phosphorus coagulation/precipitation experiments were performed using three types of polyaluminum chloride (PAC) with different Al contents (10%, 12%, and 17%). The PO4-P removal efficiencies at various operating conditions, such as initial PO4-P concentration, initial pH, and Al/P molar ratio, were evaluated, and correlations among the operating factors affecting phosphorus coagulation/precipitation with PAC were derived to optimize the process efficiency. When the initial PO4-P concentration was 0.065 and 0.161 mmol P/L under an initial pH of 8-10, the optimal PAC dose was 0.126-0.378 and 0.189-0.667 mmol Al/L, respectively. Under these conditions, the Al/P molar ratio was 2.16-6.18 and 1.28-4.30, respectively, and the PO4-P removal efficiency was in the range of 40.2-92.5%. When the Al/P molar ratio was 2 or less under an initial pH condition of 6-8, the PO4-P removal efficiency was approximately ≤40% owing to insufficient Al3+ ions. However, when the Al/P molar ratio is 3-5, the PO4-P removal efficiency improved to approximately 80-90%. Thus, the optimal Al/P molar ratio to achieve a PO4-P removal efficiency of over 90% was determined to be approximately 4 in the PO4-P coagulation/precipitation process using PAC.

Characteristics of Adsorption and Biodegradation of Tetracycline Antibiotics by Granular Activated Carbon and Biofiltration Process (Tetracycline계 항생물질들의 활성탄 흡착 및 생물여과 공정에 의한 생분해 특성)

  • Son, Hee-Jong;Yeom, Hoon-Sik;Ryu, Dong-Choon;Jang, Seung-Ho;Son, Hyung-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.379-386
    • /
    • 2014
  • Adsorption and biodegradation performance of tetracycline antibiotic compounds such as ttetracycline (TC), oxytetracycline (OTC), minocycline (MNC), chlortetracycline (CTC), doxycycline (DXC), meclocycline (MCC), demeclocycline (DMC) on granular activated carbon (GAC) and anthracite-biofilter were evaluated in this study. Removal efficiency of seven tetracycline antibiotic compounds showed 54%~97% by GAC adsorption process (EBCT: 5~30 min). The orders of removal efficiency by GAC adsorption were tetracycline, demeclocycline, oxytetracycline, chlortetracycline, doxytetracycline, meclocycline and minocycline. Removal efficiencies of seven tetracycline antibiotic compounds showed 1%~61% by anthracite biofiltration process (EBCT: 5~30 min). The highest biodegradable tetracycline antibiotic compound was minocycline, and the worst biodegradable tetracycline antibiotic compounds were oxytetracycline and demeclocycline.

Convergence Process for the Removal of Heavy Metals in the Abandoned Mine (휴폐광산의 중금속제어를 위한 융합공정 개발)

  • Dho, Hyonseung
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.155-160
    • /
    • 2016
  • The convergence process utilized both leaching and ion exchange techniques has been investigated for the heavy metals removal in the abandoned mine of Chungyang Province, Korea. The contaminated soil samples by heavy metals from Samkwang mine were analysed by statistical analyses. The highly contaminated soils was initially separated by the flotation process. The selectivity indices were increased with increasing flotation reagents. The selectivity of separation was then improved by the use of both leaching and ion exchange processes in order to extract the heavy metals. The results of this study showed that the higher the sulfuric acid concentration, the leaching rate of heavy metals was increased. The lecheate then was removed by the ion exchange method. The anticipating results might imply that convergence process utilized both leaching and ion exchange techniques would somehow apply for the removal of heavy metals in the abandoned mine.

Removal of diesel hydrocarbons by microwave-enhanced soil vapor extraction (Focused on Loss and Kinetic constant for Diesel Hydrocarbons)

  • 김종운;박갑성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.223-226
    • /
    • 2004
  • In this paper, removal of diesel hydrocarbons (C$_{10}$-C$_{22}$) for dry and moist soil was investigated so that microwave-enhanced soil vapor extraction(SVE) reduced soil treatment time and raised remediation efficiency. Kinetic constants of diesel hydrocarbons with microwave energy were 7 times on dry soil and 1580 times on moist soil as much as those of SVE process without microwave energy. The diesel removals were 67.7~78.4% for $C_{10}$ and $C_{12}$, and 0~18.5% for $C_{14}$~C$_{22}$ for dry and moist soil with SVE process only. On the other hand, dry soil with microwave-enhanced SVE process showed 89.3~99.4% removal for $C_{10}$ and $C_{12}$ and 35.6~67.0% for hydrocarbons over $C_{14}$. All hydrocarbons(C$_{10}$~C$_{22}$) studied were significantly removed (93.6~99.8%) for moist soil with microwave-enhanced SVE process. Almost all diesel hydrocarbons were usually considered as semi-volatile compounds(SVOCs). Microwave-enhanced SVE process might have a great potential for remediation of soils contaminated with SVOCs.OCs.

  • PDF

A Study on the Process Analysis and the Risk Assessment for Removal Work of the Asbestos Cement Slate (석면 슬레이트 해체작업의 공정분석 및 위험성평가에 관한 연구)

  • Oh, Hyunsoo;Kim, Jeong-Min;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.137-143
    • /
    • 2014
  • Asbestos is given to a variety of six naturally occurring silicate minerals. These minerals possess high tensile strength, flexibility, resistance to chemical and thermal degradation, and electrical resistance. These minerals have been used for decades in thousands of commercial products, such as insulation and fireproofing materials, automotive brakes, textile products, cement and wallboard materials. When handled, asbestos can separate into microscopic-size particles that remain in the air and are easily inhaled. It is now known that prolonged inhalation of asbestos fibers can cause serious and fatal illnesses including malignant lung cancer, mesothelioma, and asbestosis. Therefore the use of asbestos and asbestos products has dramatically decreased in recent years. Also all constructions including asbestos should be removed under strictly controlled conditions and very tightly implemented health & safety management systems. In this study, the process of the removal work of the asbestos cement slate was analyzed by IDEF-0 modeling and evaluated by 4M risk assessment method. The results show that removal work of the asbestos cement slate was classified five process and eighteen detail process. The risk of safety side the higher than the risk of health side in 4M risk assessment.

Removal of nitrogen and phosphorus of the secondary effluent by electro-coagulation (전기응집을 이용한 2차 유출수의 질소.인 제거 공정 연구)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.579-589
    • /
    • 2012
  • To reduce extensive energy costs of the internal recycling for the purpose of denitrification in the advanced wastewater treatment, a post-treatment process using an electro-coagulation to treat nitrate in the secondary effluents is evaluated in this study. Removals of phosphorus and organics in the secondary effluents by the electro-coagulation were also evaluated to propose an alternative advanced wastewatert treatment process. A series of experiments of the electro-coagulation were carried out with the following 4 different samples: synthetic solution containing nitrate only, synthetic solution containing nitrate as well as phosphorus, secondary effluents from activated sludge cultivated in laboratory, and secondary effluents from real wastewater treatment plants. Removals of nitrate and phosphorus in the synthetic solution were 30 and 97 % respectively, which verified the feasibility of the process. Removals of nitrate, phosphorus and COD in the secondary effluents from the cultivated sludge in laboratory were 49, 90 and 19 % respectively. Removal efficiency of the total nitrogen, nitrrate, phosphorus and COD in the secondary effluent from real wastewater treatment plant were 50, 61, 98 and 80 % respectively. The removal of the total nitrogen was less than the nitrate as expected, which is due to the formation of ammonia nitrogen in the cathode. But the proposed scheme could be an energy saving and alternative process for the advanced wastewater treatment if further studies for the process optimization are carried out.

A Study on the Cu2+ Behavior in Activated Sludge Process (활성슬러지공정에서 구리의 거동에 관한 연구)

  • Park, Jin-Do;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1119-1127
    • /
    • 2010
  • The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was $697\;m^3$/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %. The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.

Simultaneous degradation of nitrogenous heterocyclic compounds by catalytic wet-peroxidation process using box-behnken design

  • Gosu, Vijayalakshmi;Arora, Shivali;Subbaramaiah, Verraboina
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.488-497
    • /
    • 2020
  • The present study investigates the feasibility of nitrogenous heterocyclic compounds (NHCs) (Pyridine-Quinoline) degradation by catalytic wet peroxidation (CWPO) in the presence of nanoscale zerovalent iron supported on granular activated carbon (nFe0/GAC) using statistical optimization technique. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the process parameters of CWPO process such as initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of pyridine (Py) and quinolone (Qn) were chosen as the main variables, and total organic carbon (TOC) removal and total Fe leaching were selected as the investigated response. The optimization of process parameters by desirability function showed the ~85% of TOC removal with process condition of initial solution pH 3.5, catalyst dose of 0.55 g/L, hydrogen peroxide concentration of 0.34 mmol, initial concentration of Py 200 mg/L and initial concentration of Qn 200 mg/L. Further, for TOC removal the analysis of variance results of the RSM revealed that all parameter i.e. initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of Py and initial concentration of Qn were highly significant according to the p values (p < 0.05). The quadratic model was found to be the best fit for experimental data. The present study revealed that BBD was reliable and effective for the determination of the optimum conditions for CWPO of NHCs (Py-Qn).

Improvement of Turbidity Removal using the Two Stage Electroflotation-rising Process (2단계 전기부상-상승 공정을 이용한 탁도 제거 향상)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.907-914
    • /
    • 2020
  • In this study, the two-stage electroflotation-rising process was investigated with the aim of improving the performance of the conventional one-stage electroflotation process. A total of 32 min (the electroflotation and rising times were 30 min and 2 min, respectively,) was required when a current of 0.35 A was applied in the one-stage electroflotation-rising experiment. The amount of electric power required to treat 1 ㎥ of water was 1.75 kWh/㎥. For the two- stage system, the time required to achieve a turbidity removal rate of over 95% was 16 min (50% of the one-stage system). The amount of electric power required to treat 1 ㎥ of water was 0.59 kWh/㎥, which was only 33.7% of that required for the one-stage process. The total treatment time and electric power were excellent in case of the two-stage system in comparison with those of the one-stage process. The rate of turbidity removal for the horizontal electrode arrangement is 9.3% higher than that of vertical electrode arrangement. When Na2SO4 was used as the electrolyte, the optimum electrolyte concentration was 1.0 g/L.

Development and Application of Modified Intermittently Aeration mode for Advanced Phase Isolation Ditch (APID) process at Winter Season (APID공정 내 동절기 개량형 간헐포기 운전모드 적용 및 개발)

  • Kwak, Sung-Keun;An, Sang-Woo;Chung, Mu-Keun;Park, Jae-Ro;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.872-878
    • /
    • 2009
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to develop and apply the modified intermittently aeration mode as process control conditions for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent $BOD_5$, SS, T-N, and T-P concentrations were 6.3, 4.5, 10.0, and 1.3 mg/L. The modified mode decreased the nitrification capability more than the conventional mode in the application period. Nitrate in the anaerobic condition can have a negative effect on biological phosphorus removal. In the decreasing nitrate levels, the modified mode increased the biological ability of removal phosphorus more than the conventional mode in this study. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.