• Title/Summary/Keyword: Removal of impurities

Search Result 144, Processing Time 0.027 seconds

Recovery Process for the Recycling of Waste Carbon Black

  • Lee, Sungoh;Nampyo Kook;Tam Tran;Bangsup Shin;Kim, Myongjun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.215-219
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A lot of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurity content such as sulphur, iron, ash and etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3-5 times more expensive than oil-based carbon black because of its process difficulties and requires pollutant treatment. Hydrophilic carbon is normally used far conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc.. In these applications, hydrophilic carbon must maintain its high purity. In this study magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. As results, the ash, iron and sulphur content of product decreased to less than 0.01wt.%, 0.0lwt.% and 0.3wt.% respectively, and the surface area of product was about 930 $m^2$/g.

  • PDF

Oxidation Added Wet Cleaning Process for Synthetic Diamonds (합성 다이아몬드를 위한 산화제가 첨가된 세정공정)

  • Song, Jeongho;Lee, Jiheon;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3597-3601
    • /
    • 2013
  • In this study, a wet cleaning process, P II, using aqua-regia and sulfuric acid mixture with oxidant agent ($K_2S_2O_8$, $P_2O_5$, $KMnO_4$, $H_2O_2$ etc) is proposed to remove the metastable phase of graphite such as graphene and DLC for high quality synthetic diamonds. The process employed the conventional acid cleaning process (P I) as well as P I+P II to remove the graphite related impurities from the 200um-diamond powders synthesized at 7GPa-$1500^{\circ}C$-5minutes. The degree of cleaning after P I and P I+P II has been observed by naked-eye, optical microscopy, micro-Raman spectroscopy, and TGA-DTA. After P I+P II, the color of diamond became more vividly yellow with enhanced saturation with naked eye and optical microscopy analysis. Moreover, the disappearance of diamond-like-carbon (DLC) peak ($1440cm^{-1}$) observed by Raman spectroscopy confirmed the decrease in amount of remaining impurities. TGA-DTA results showed that the graphite impurities first started to dissolve at $770.91^{\circ}C$ after PI process. However, the pyrolysis started at $892.18^{\circ}C$ after P I+P II process because of the dissolution of pure diamonds. This result proved the effective dissolution of the metastable phase of graphite. We expect that the proposed P II process may enhance the quality of diamonds through effective removal of surface impurities.

Pretreatment for Improving Selective Hydrogenation Reaction of α, β-Unsaturated Aldehydes (α, β-불포화 알데히드의 선택적 수소화 반응성 향상을 위한 전처리 방법)

  • Kook-Seung Shin;Mi-Sun Cha;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.168-174
    • /
    • 2023
  • In commercial production processes of methyl methacrylate, there is a methacryl aldehyde as an intermediate or impurities. The existence of impurities is critical factor because of significant decrease of the conversion rate and selectivity of the entire chemical reaction. This study found that an acid was the main cause of the decrease in reactivity among various impurities because an acid rapidly lowers the activity of a catalyst and promotes a side reaction, the hetero Diels-Alder reaction. Therefore, the pretreatment methods with the removal of acid were comparatively evaluated by the selective hydrogenation reaction of the carbonyl group of the reactants. Based on several experimental conditions, we believe that proposed effective pretreatment improves productivity with appropriate economical process.

High Purification Characteristics of Quartz with Physical Separation Method (물리적 정제방법에 의한 규석의 고순도화 연구)

  • Hyun Jong-Yeong;Jeong Soo-Bok;Chae Young-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.1-5
    • /
    • 2006
  • In this study, we have investigated the purification characteristics of quartz which size was 0.1mm to 0.3 mm by using physical separation techniques. The A and B samples which contained 95,864 mg/kg and 4,568 mg/kg of impurities were reduced upto 126 mg/kg and 174 mg/kg of impurities, respectively. So, removal ratios of the total impurities were about 97.85 wt.% and 96.19 wt.%, individually. At that time, the yields of the purified quartz (over 99.98 wt.% $SiO_2$) were 79.05 wt.% and 75.43 wt.% by using purification process including magnetic separation, gravity separation and scrubbing process. The most benefit in purification process of both different raw materials for iron element can be achieved by magnetic separation. Also, gravity separation is extremely successful for reducing aluminium element.

Removal of Uranium from U-bearing Lime-Precipitate using dissolution and precipitation methods (우라늄 함유 석회침전물의 용해 및 침전에 의한 U 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • This study was carried out to remove (/recover) the uranium from the Uranium-bearing Lime Precipitate (ULP). An oxidative dissolution of ULP with carbonate-acidified precipitation and a dissolution of ULP with nitric acid-hydrogen peroxide precipitation were discussed, respectively. In point of view the dissolution of uranium in ULP, nitric acid dissolution which could dissolved more than 98% of uranium was more effective than carbonate dissolution. However, in this case, uranium was dissolved together with a large amount of impurities such as Al, Ca, Fe, Mg, Si, etc. and some impurities were also co-precipitated with uranium during a hydrogen peroxide precipitation. On the other hand, in the case of carbonate dissolution-acidified precipitation, U was dissolved less than 90%. Therefore, it was less effective than nitric acid dissolution for the volume reduction of radioactive solid waste. However, it was very effective to recover the pure uranium, because impurities were hardly dissolved and hardly co-precipitated with uranium.

Removal of Harmful Impurities Including Microplastics in Sun-Dried Sea Salt by Membrane Technology (분리막을 이용한 천일염내 불순물 및 미세플라스틱 제거에 관한 연구)

  • Lim, Si-Woo;Seo, Chae-Hee;Hong, Seung-Kwan;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.314-324
    • /
    • 2022
  • This study is aimed to design a membrane process that systematically removes contaminants including microplastics in sun-dried salt using a separation membrane. In this study, we selected the separation membrane material, pore size, and module suitable for the sun-dried salt fields, and proceeded with the experiments under the salt fields and laboratory conditions. A pilot plant was constructed and tested in our lab and in the actual saltern with the selected 200 kDa, 4 kDa ultrafiltration membranes, and 3 kDa nanofiltration membranes. Most of the impurities in the sea salt were 0.1 ㎛ in size, and more than 7 types of various microplastics were detected in the impurities. After that, as a result of checking the filtered water through the separation membrane process, no impurities were detected. As a result of comparing the existing sea salt component and the sea salt component prepared with separation membrane filtrate, impurities were effectively removed without change in the sea salt component.

Removal of impurities from the rutenium containing scraps by nitric acid leaching (함(含)루테늄 스크랩으로부터 질산침출(窒酸浸出)에 의한 불순물(不純物) 제거(除去))

  • Ahn, Jae-Woo;Chung, Dong-Wha;Seo, Jae-Seong;Lee, Ki-Woong;Yi, Kang-Myung;Lee, Jae-Hoon
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.26-36
    • /
    • 2009
  • A recovery process of Ruthenium from waste electronic scrap has been investigated by means of nitric acid leaching as a part of development for scrap pretreatment process to obtaining an optimum conditions for removal of removing various impurities such as Pb, Bi, Zn, Al, Bi, Ag Fe, Co, Zr, Si. From the experiments, 90% of Pb leached with 250 g/l pulp density in 10-15% nitric acid. Leaching behavior of Ba was also similar to that of the Pb, but those of other metal impurities, such as Zn, Al, Bi, Ag, Fe, Co, Zr, showed different behavior, in which the dissolution rate increased as the concentration of nitric acid in solution is increased up to the 10% $HNO_3$ in solution and then it was constant above 10% $HNO_3$ concentrations. Meanwhile, the dissolution of Ru in $HNO_3$ solution was less then 100ppm, and that the total content of Ru in undissolved residue scrap was resulted in an increment of 50%.

Recovery of high-purity phosphoric acid from the waste acids in semiconductor manufacturing process (반도체(半導體) 제조공정(製造工程)에서 발생하는 혼산폐액(混酸廢液)으로부터 고순도(高純度) 인산회수(燐酸回收))

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Kim, Jun-Young;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.26-32
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to remove impurities less than 1 ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, a mixed system of solvent extraction, diffusion dialysis and ion-exchange was developed to commercialize in an efficient system fur recovering the high-purity phosphoric acid. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. And by solvent extraction method with tri-octyl phosphate (TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio A/O=1/3 with 4th stage of extraction stage. About 97.5% of Al and 36.7% of Mo were removed by diffusion dialysis. Essentially almost complete removal of metal ions and purification of high-purity phosphoric acid could be obtained by using ion exchange.

The study on the separation characteristics of heavy metal ion by inorganic oxides and ion exchange resin (무기산화물 및 이온교환수지에 의한중금속 이온 분리특성 연구)

  • Dan, Cheol Ho;Kim, eong Ho;Yang, Hyun Soo
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The effectiveness of inorganic oxides (DT-30), anionic exchange resin (DT-60) and carbon absorbent (DT-80, DT-90) on the equilibrium and continuous separation characteristics and removal of cobalt, cesium and iodide ion in the waste water was investigated. As a result, DT-30, DT-80 or DT-90, and DT-60 showed excellent separation properties on the cesium, cobalt and iodide respectively. In the equilibrium experiment, the adsorption amount of cesium for DT-30 increased with temperature, but increasd largely with pH. In case of DT-80, adsorption of cobalt was depended on pH but was not influenced by temperature. In the continuous system by passing a heavy metal ion solution through the ion exchange tower, DT-30, DT-90 and DT-60 showed good separation characteristic for cesium, cobalt and iodide respectively. In this case, separation characterization of DT-30 on the cesium and of DT-60 on the iodide were better than that of DT-90 on the cobalt. From the experiment on the effect of impurities on the ion exchange characteristics, impurities such as surfactant and oil did not influence the efficiency of DT-90. In the mean while, ion separation capacity of DT-30 were decreased largely by impurities such as surfactant and oil. Also, surfactant had a strong influence on the effectiveness of DT-60. Accordingly, it turned out to be very important thing that impurities should be removed in the preprocessing stage.

  • PDF

Rejection of DNA, Protein-DNA Complexes and Chromatin by Hollow Fiber Membranes

  • Higuchi, Akon;Hara, Mariko;Sato, Tetsuo;Ishikawa, Gen;Nakano, Hiroo;Satoh, Sakae
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.18-21
    • /
    • 1996
  • Virus and DNA removal in bio-drug manufacturing processes has received a great deal of attention in recent years. Removing of a virus using a membrane process is a promising method, because inactivated virus can be removed from the bio-drug and the process can be used as an additional and security inactivation after the method of general heat-inactivation of the virus in the bio-drug. The FDA and the biopharmaceutical industry have recently announced strict guidelines for impurities of virus and DNA contamination. The regulatory guidelines on residual amounts of DNA in mammalian cell culture products require DNA contamination of less than 100 pg/dose. Therefore, permeation and rejection of DNA through the porous membranes have become important in the application of DNA removal in bio-drug manufacturing using membrane technology. In this study, the permeation of DNA and chromatin through regenerated cellulose hollow fibers that have a mean pore diameter of 15 nm was investigated.

  • PDF