• Title/Summary/Keyword: Removal of T-N and T-P

Search Result 443, Processing Time 0.038 seconds

Development of Amalgamated Septic Tank using Mineral Sintered Body (광물 소결체를 이용한 합병정화조 개발에 관한 연구)

  • 김광수;김영훈;강헌찬
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.56-62
    • /
    • 2000
  • This study was introduced an amalgamated septic tank system using mineral sintered body was made from non-metallic minerals with a ability being attached or accelerating a vitality of soil microorganism for the effective wastewater treatment. Experimentally, we made an amalgamated septic tank appling anaerobic-aerobic process experimental facilities to two personal houses for handling a residental sewage directly on a small scale from the place of origin. The results are shown as follows; The COD\ulcorner and BOD of effluent were about 10 mg/l after the treatments and T-N removal efficiency was 60-70%. Moreover these results suggested the possibility of denitrification without adding organics and more than 80% of T-P removal also showed the possibility of wastewater treatment biologically.

  • PDF

Treatment Efficiencies and Decomposition Velocities of Pollutants in Constructed Wetlands for Treating Hydroponic Wastewater (인공습지시스템을 이용한 폐양액처리장에서 오염물질의 정화효율 및 오염물질 분해속도)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Choong-Heon;Lee, Seong-Tea;Jeong, Tae-Uk;Lee, Sang-Won;Ha, Yeong-Rae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.937-943
    • /
    • 2011
  • In order to develop constructed wetlands for treating hydroponic wastewater in greenhouses, removal efficiencies and decomposition velocities of pollutants in constructed wetland were investigated for treating hydroponic wastewater. Removal rates of BOD, COD, SS, T-N and T-P in effluent in constructed wetlands were 88%, 79%, 92%, 64% and 92%, respectively. The decomposition velocities (K; $day^{-1}$) of pollutants in $1^{st}$ HF bed of constructed wetlands were higher in the order of SS ($0.54day^{-1}$) > BOD ($0.39day^{-1}$) > COD ($0.27day^{-1}$) > T-P ($0.26day^{-1}$) > T-N ($0.06day^{-1}$). In $1^{st}$ HF bed of constructed wetlands, the decomposition velocity of SS was rapid than that for BOD, COD, T-N and T-P in constructed wetland for treating hydroponic wastewater. The decomposition velocity (K; $day^{-1}$) of pollutants in $2^{nd}$ HF bed of constructed wetland were higher in the order of T-P ($0.52day^{-1}$) > BOD ($0.28day^{-1}$) > COD ($0.15day^{-1}$) > T-N ($0.06day^{-1}$) > SS ($0.10day^{-1}$). In $2^{nd}$ HF bed of constructed wetlands, the decomposition velocity of T-P was rapid than that for BOD, COD, SS and T-N in constructed wetland for treating hydroponic wastewater.

Nutrient Removal in an Advanced Treatment Process using BIO-CLOD (BIO-CLOD를 이용한 고도처리공정에서의 영양염류 제거)

  • Park, Wan-Cheol;Lee, Mi-Ae;Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the effect of BIO-CLOD on advanced wastewater treatment for enhanced removal efficiency and meeting the stringent discharge water requirements of wastewater treatment plants. Methods: Two experimental apparatuses consisting of anaerobic, anoxic and aeration tanks were operated. One included a BIO-CLOD cultivation tank. Organic and nutrient parameters and removal efficiency were analyzed by pH, BOD, CODcr, SS, T-N and T-P. Results: The average removal efficiencies of BOD, COD and SS from the apparatus with BIO-CLOD tank installation were 95.5%, 88.6% and 92.9%, respectively, and these were higher than the results from the apparatus without BIO-CLOD. The average TP removal efficiency with BIO-CLOD tank marked 56.0%, higher than the 47.3% from the apparatus without one. BIO-CLOD showed a higher performance for TN removal at 49.6%, compared to the result without BIO-CLOD of 34.3% Conclusion: By reaction with BIO-CLOD, ammonia removal was effective in the aeration tank, as was phosphorus release in the anaerobic tank. Phosphorus luxury uptake and nitrification in aeration tank proceeded smoothly. The application of BIO-CLOD can improve the decrease of odor and settleability of activated sludge in a wastewater treatment plant, as well as increase the removal efficiency of organic and nutrient materials in water.

Nutrient Uptake by Reeds Growing in Subsurface-flow Wetland Constructed to Purify Stream Water (하천수정화 여과습지에서 성장하는 갈대의 영양염류 흡수량)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • The growth and biomass of reeds(Phragmites australis) growing in a subsurface treatment wetland system were investigated from April 2003 to October 2003. Nitrogen(N) and phosphorous(P) concentrations in above-ground(AG) and below-ground(BG) tissues of reeds were examined and the removal rate of N and P by reeds were analyzed. The system, 29 m in length, 9 m in width and 0.65 m in depth, was constructed in June 2001 on a floodplain in the down reach of the Kwangju Stream in Korea in order to purify polluted water of the stream. A bottom layer of 45 cm in depth was filled with crushed granites(15~30 mm in diameter) and a middle layer of 10 cm in depth was filled with pea pebbles(10 mm in diameter). An upper layer of 5 cm contained course sand. Reeds were transplanted on the surface of the system, which were dug out of natural wetlands, and their shoots were trimmed 40 cm in height. The height and density of the shoots averaged 237.7 cm and 244.0 shoot/$m^2$, respectively, when the reeds grew fully. The maximum biomass of AG and BG tissues were 1,964 and 1,577 g/$m^2$, respectively, and the AG : BG ratio of biomass was 1.26. Mean AG and BG dry weights were recorded as 1,355 and 748 g/$m^2$, respectively. The AG and BG tissue concentrations of N averaged 12.37 and 10.01 mg/g, respectively, and those of P 2.37 and 2.03 mg/g, respectively. Inflow to the system averaged 40 $m^3$/day. The concentrations of total nitrogen(T-N) in influent and effluent were 8.4 mg/L and 3.2 mg/L, respectively, and those of total phosphorous(T-P) were 0.73 and 0.38 mg/L, respectively. The total removal of T-N and T-P by the system during the investigation period averaged 140.2 and 9.7 g/$m^2$, respectively, and the total uptake of N and P by the reeds were calculated as 24.39 and 4.73 g/$m^2$, respectively. Average removals of about 17% of N and about 49% of P by reeds were recorded. The N and P concentrations in AG tissues were significantly different among the three zones of the system:near to inflow(St1), in the middle of system(St2), and near to outflow(St3). The N and P concentrations in BG tissues were also significantly different among St1, St2 and St3. N and P concentrations in AG and BG tissues of reeds growing in St1 were higher than those in St2 and St3. The height and density of shoots of reeds in St1 were larger than those in St2 and St3. Significant amounts of N and P in the influent were taken up by reeds in St1.

Treatment Efficiency of a Pond-Wetland System for the Water Quality Conservation of Estuarine Lake (담수호 수자원보전을 위한 수질정화 연못-습지 시스템의 초기처리수준)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.64-71
    • /
    • 2001
  • Treatment efficiency was examined of a pond-wetland system constructed for water quality conservation of Koheung Estuarine Lake over one year after its establishment in July 2000. The system is composed of primary and secondary ponds in series and six wetland cells in parallel. Cattails (Typha angustiflora) were planted in three wetland cells and common reeds (Phragmites australis) in three other cells. Water pumped from Sinyang Stream flowing into the Lake was funneled into primary pond whose effluent was discharged into secondary pond by gravity flow. Effluent from secondary pond was distributed into each wetland cell. SS, $BOD_5$, T-N, and T-P concentrations in influent to primary pond, and effluent from primary pond, secondary pond, and three wetland cells planted with cattails were analyzed for about one year from August 2000 to August 2001. The removal rates at primary pond for SS, $BOD_5$, T-N and T-P were 29%, 30%, 15%, and 36%, respectively. The abatement rates at secondary pond for SS, $BOD_5$, T-N and T-P were 38%, 40%, 30%, and 47%, respectively. The reduction rates measured at three cattail-planted wetland cells for SS, $BOD_5$, T-N and T-P were 54%, 57%, 60%, and 68%, respectively. Considering early stage of the pond-wetland system and inclusion of winter during the research period, its treatment efficiency was rather good. Cattails had not yet grown to dense stands due to initial establishment period, which resulted in slightly lower treatment efficiencies of wetland cells for these pollutants, compared with those of ponds.

  • PDF

A Study on Performance Evaluation for the Bio-retention Non-point Source Pollution Treatment System (생물 저류 방법 적용을 통한 비점오염원 처리시설의 성능평가에 관한 연구)

  • Lee, Jang-Soo;Park, Yeon-Soo;Cho, Wook-Sang
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This study was purposed and performed to evaluate removal efficiency of non-point source pollution in the process and system based on bio-retention design criteria regulated by EPA. Basic Column Reactors (BCR) were prepared for optimal determinations of inflow rate of first rainfall runoff and composition and ratio of soil layers. Removal efficiencies of non-point source pollution from synthetic runoff and real first rainfall runoff, directly sampled from motor way and parking lot, were analyzed, respectively. Removal efficiency of SS, BOD, COD, T-N, and T-P were all shown to be more than 80%.

Nitrogen and Phosphorus Removal of Municipal Wastewater with Temperature in CNR Process (섬모상담체를 이용한 혐기, 무산소, 호기공정(CNR공법)의 온도변화에 따른 하수의 질소, 인의 제거특성)

  • 김영규;양익배;김인배;이영준
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.112-118
    • /
    • 2001
  • The aim of this study was to evaluate on the removal effect of total nitrogen and phosphorus in municipal wastewater with temperature change from 1$0^{\circ}C$ to 24$^{\circ}C$ in CNR(Cilia Nutrient Removal) process. CNR process is the process combining $A^2$/O process with cilium media of H2L company. The removal efficiencies for T-N were found to be 57.9% at 1$0^{\circ}C$ below, 53.7% at 10-2$0^{\circ}C$, 52.2%at 20-24$^{\circ}C$ and 44.4% over 24$^{\circ}C$ respectively. The removal efficiencies for T-P were 53.3% at 1$0^{\circ}C$ below, 59.1% at 10-2$0^{\circ}C$, 72.4% at 20-24$^{\circ}C$ and 50.0% over 24$^{\circ}C$ respectively. The specific nitrification rate (kg NH$_3$-N/kg MLSS.d) of Oxic basin was 0.088 and 0.053 at 1$0^{\circ}C$ below, 0.077 at 10-2$0^{\circ}C$, 0.097 at 20-24$^{\circ}C$ and 0.088 over 24$^{\circ}C$ respectively. The specific denitrification rate (kg NH$_3$-N/kg MLSS.d) in anaerobic and anoxic was 0.013, 0.008 respectively.

  • PDF

A study on development of basic natural system for polluted streams using wasted concrete and Oenanthe javanica (미나리와 폐콘크리트를 이용한 하천정화공법의 기초 연구)

  • Kim, Jwa-Kwan;Yoon, Sung-Yoon
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.59-67
    • /
    • 2000
  • The aim of this study is to identify the role of this natural treatment system, which consists of Oenanthe javanica and wasted concrete as bio-media. Therefore, it was designed to experiment water quality, BOD, SS, T-N, T-P to recognize the efficiency of treatment system with one biofilter tank using wasted concrete and vegetation bed using Oenanthe javanica. It was also designed to compare two different biofilter reactors, which are air lift and upflow methods. In the result, it was demonstrated that upflow method is more efficient system to control water quality of polluted streams. The vegetation bed using Oenanthe javanica has the treatment efficiency of 41 % (BOD), 52 % (COD), 60% (SS), 36 % (T-P), 70 % ($NH_4-N$). It was therefore proved that removal rates of nutrients are not so good except $NH_4-N$ concentration with nitrification.

  • PDF

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed (대청호 유역 비점오염원 제어를 위한 생태습지의 오염물질 제거효율 평가)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland's capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.

A Study on the Adsorption Effect of Korean zeolite "Clinoptilolite" as Cigarette Cavity Filter Additive. (한국산 Zeolite의 필터첨가제로서의 흡착효과에 관하여)

  • Yang, Gwang-Gyu;Song, Chi-Hyeon;Kim, Chan-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 1980
  • The cavity of triple filter was filled with the mixture of clinoptilolite and charcoal(1:1, V/V). The particle size of clinoptilolite was 30$\pm$5 A.S.T.M mesh. The reduction effects of the important gaseous components by this mixture were obtained as follows: 1) In comparison with the normal cellulose acetate niter, the contents of nicotine and T.P.M. were reduced about 35% and 22% respectively. 2) Many aliphatic and cyclic compounds were also substantially reduced in an average of 60%. 3) In contrast with the charcoal, the removal efficiency of clinoptilolite was revealed as higher (15-20%) in case of aliphatic compounds than the one (10-15%) of cyclic compounds. The above results showed us that the removal function of gaseous components was quite complementary each other (charcoal and clinoptilolite).

  • PDF