• Title/Summary/Keyword: Removal amount

Search Result 1,458, Processing Time 0.024 seconds

Removal of a Heavy Metal from Wastewater using Membrane Process and Instrumental Analysis (Membrane 공정을 이용한 폐수로부터 중금속의 제거 및 기기분석)

  • Park, Kyung-Ai;Lee, Seung-Bum;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.229-234
    • /
    • 1995
  • Membrane process has been applied widely to petroleum chemistry, fine chemistry, polymer, electronics, food, bioprocessing, and wastewater treatment process. Membrane process has advantage that there's no phase change through separation, energy consumption is smaller than other separation processes. And equipment investment and operation cost are inxpensive too. We prepared the silicone rubber membrane and then separated the heavy metal ion from wastewater. Silicone rubber membrane was prepared using a superitical fluid process and heavy metal ions were separated from the chromium nitrate, ferric sulfate, cupric sulfate, nickel sulfate aqueous solution. The pressure difference between top and bottom of separation apparatus was preserved by vacuum pump, and the removal amount of heavy metal at each separation step were analyzed by instrumental analysis, AAS. The surface and pore of silicone rubber membrane was investigated using SEM, and the capability of wastewater treatment using a silicone rubber membrane was proposed as calculated removal rate of heavy metal after comparing removal amount of heavy metal to amount of heavy metal in mother solution by AAS analysis.

  • PDF

Comparison of CAD/CAM abutment and prefabricated abutment in Morse taper internal type implant after cyclic loading: Axial displacement, removal torque, and tensile removal force

  • Yi, Yuseung;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.305-312
    • /
    • 2019
  • PURPOSE. The purpose of this study was to compare computer-aided design/computer-aided manufacturing (CAD/CAM) abutment and prefabricated abutment in Morse taper internal connection type implants after cyclic loading. MATERIALS AND METHODS. The study was conducted with internal type implants of two different manufacturers (Group Os, De). Fourteen assemblies were prepared for each manufacturer group and divided into 2 groups (n=7): prefabricated abutments (Os-P, De-P) and CAD/CAM abutments (Os-C, De-C). The amount of axial displacement and the removal torque values (RTVs) were measured before and after cyclic loading (106 cycles, 3 Hz with 150 N), and the tensile removal force to dislodge the abutments was measured after cyclic loading. A repeated measures ANOVA and a pattern analysis based on the logarithmic regression model were conducted to evaluate the effect of cyclic loading on the axial displacement. The Wilcoxon signed-rank test and the Mann-Whitney test was conducted for comparison of RTV reduction% and tensile removal forces. RESULTS. There was no significant difference between CAD/CAM abutments and prefabricated abutments in axial displacement and tensile removal force; however, significantly greater RTV reduction% after cyclic loading was observed in CAD/CAM abutments. The correlation among the axial displacement, the RTV, and the tensile removal force was not significant. CONCLUSION. The use of CAD/CAM abutment did not significantly affect the amount of axial displacement and tensile removal force, but presented a significantly greater removal torque reduction% than prefabricated abutments. The connection stability due to the friction at the abutment-implant interface of CAD/CAM abutments may not be different from prefabricated abutment.

Performance and Operation of Biological Activated Carbon (생물활성탄접촉조의 성능과 조작)

  • Lee, Gangchoon;Yoon, Taekyung
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • Performance and operation of BAC in ozone-BAC advanced water treatment process were investigated using the pilot scale test plant built in D water purification plant. The performance was evaluated by the removal efficiencies of DOC, BDOC, ammonia nitrogen and THMs. The effect of EBCT on DOC removal was experimented for an effective operating condition, and the amount of attached biofilm was analyzed in various water temperatures and position of BAC. Two removal mechanisms, adsorption and biological decomposition by attached biofilm, were predominant to decrease the concentration of various contaminants. DOC was removed 40%, and the removal rate was decreased in winter time due to the lowered activity of attached biofilm. BDOC was effectively removed. THMs and ammonia nitrogen were mainly removed not in ozonation process but in BAC. Water temperature deeply influenced in removal efficiency of ammonia nitrogen. The amount of attached biofilm depended on water temperature and height of packed activated carbon column. Considering DOC removal efficiency and design EBCT of commercial BAC plant, the proper EBCT was 12.5 minutes.

A Study on the Characteristics of Internal-Face Magnetic Abrasive Finishing for Titanium Pipe (타이타늄 파이프의 내면 자기연마 가공에 관한 연구)

  • Li, Li-Hai;Mun, Sang-Don;Kim, Young-Whan;Park, Won-Ki;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.701-708
    • /
    • 2011
  • Although Titanium material has superior properties, it belongs to difficult-to-machine materials. The present research applies magnetic abrasive finishing to precision machining of internal-face of titanium pipes, and analyzed & assessed the influence of grinding conditions on magnetic abrasive effects through the removed amount and surface roughness of materials. There was the influence on grinding properties according to change of rotational speed, a total input of mixed powder and an input of grinding liquid, and when the total input, rotational speed and ratio of electrolytic iron versus magnetic abrasives are 8g and 1000rpm, it was most advantageous in aspects of surface roughness and material removal amount, and the grinding liquid remarkably improved the surface roughness and material removal amount only with addition of trace amounts of light oil rather than dry machining conditions. And a result of considering the influence on grinding properties by using an inert gas (Argon gas) for improving grinding properties of the internal-face of titanium pipe, the present research has obtained improvement effects in the removal amount and surface roughness through utilization of an inert gas.

Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (I) (도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (I))

  • Jung, Yeon-Hoon;Lee, Soo-Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.979-983
    • /
    • 2009
  • The mean pH of wastewater discharged from the plating process is 2, so a less amount of alkali is required to raise pH 2 to 5. In addition, if sodium sulfite is used to raise pH 5 to 9 in the secondary treatment, caustic soda or slaked lime is not necessary or only a small amount is necessary because sodium sulfite is alkali. Thus, it is considered desirable to use only $FeSO_4{\cdot}7H_2O$ in the primary treatment. At that time, the free cyanide removal rate was highest as around 99.3%, and among heavy metals, Ni showed the highest removal rate as around 92%, but zinc and chrome showed a low removal rate. In addition, the optimal amount of $FeSO_4{\cdot}7H_2O$ was 0.3g/L, at which the cyanide removal rate was highest. Besides, the free cyanide removal rate was highest when pH value was 5. Of cyanide removed in the primary treatment, the largest part was removed through the precipitation of ferric ferrocyanide: $[Fe_4(Fe(CN)_6]_3$, and the rest was precipitated and removed through the production of $Cu_2[Fe(CN)_6]$, $Ni_2[Fe(CN)_6]$, CuCN, etc. Furthermore, it appeared more effective in removing residual cyanide in wastewater to mix $Na_2SO_3$ and $Na_2S_2O_5$ at an optimal ratio and put the mixture than to put them separately, and the optimal weight ratio of $Na_2SO_3$ to $Na_2S_2O_5$ was 1:2, at which the oxidative decomposition of residual cyanide was the most active. However, further research is required on the simultaneous removal of heavy metals such as chrome and zinc.

Characteristics of a Filter Module Adsorption for Fine Dust Removal on Road (도로 미세먼지 저감을 위한 필터 모듈의 흡착 특성)

  • Lee, Jai Yeop;Kim, Ilho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • In this study, a electrostatic filter which could be applicable to road environment was developed and evaluated in adsorption capacity. The evaluation were performance for removal by particle size and adsorption amount by pressure using ASERAE 52.1 and 52.2. The range of size for removal test was $0.3{\mu}m{\sim}10.0{\mu}m$ which had 12 steps. The filter showed 91.3% removal efficiency from $2.5{\mu}m$ and under the size, average 53.5% proportional to decreasing size value. The weight removal was 96.7% from 22.6 mmaq, initial pressure to 35 mmaq, end pressure with $715.9g/m^2$, the adsorption amount. The shape of isotherm was expressed as Langmuir's one. After washing saturated filter with dust to end pressure, the initial pressure and adsorption amount of the filter showed a light drop with no removal efficiency decline.

The Nutrient Removal of Mixed Wastewater composed of Sewage and Stable Wastewater using SBR (SBR을 이용한 하수와 우사폐수로 구성된 혼합폐수의 영양소 제거)

  • 김홍태
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.617-623
    • /
    • 1999
  • This study was carried out to obtain the optimal operating parameter on organic matters and nutrient removal of mixed wastewater which was composed of sewage and stable wastewater using SBR. A laboratory scale SBR was operated with An/Ae(Anaerobic/Aerobic) ratio of 3/3, 2/4 and 4/2(3.5/2.5) at organic loading rate of 0.14 to 0.27 kgBOD/$m^3$/d. TCOD/SCOD ratio of mixed wastewater was 3, so the important operating factor depended upon the resolving the particulate parts of wastewater. Conclusions of this study were as follows: 1) For mixed wastewater, BOD and COD removal efficiencies were 93-96% and 85-89%, respectively. It was not related to each organic loading rate, whereas depended on An/Ae ratio. During Anarobic period, the amount of SCOD consumption was very little, because ICOD in influent was converted to SCOD by hydrolysis of insoluble matter. 2) T-N removal efficiencies of mixed wastewater were 55-62% for Exp. 1, 66-76% for Exp. 2, and 67-81% for Exp. 3, respectively. It was found that nitrification rate was increased according to organic concentration in influent increased. Therefore, the nitrification rate seemed to be achieved by heterotrophs. During anoxic period, denitrification rate depended on SCOD concentration in aerobic period and thus, was not resulted by endogenous denitrification. However, the amount of denitrification during anaerobic period were 3.5-14.1 mg/cycle, and that of BOD consumed were 10-40 mg/cycle. 3) For P removal of mixed wastewater, EBPR appeared only Mode 3($3^*$). It was found that the time in which ICOD was converted to VFA should be sufficient. For mode 3 in each Exp., P removal efficiencies were 74, 87, and 81%, respectively. But for 45-48 of COD/TP ratio in influent, P concentration in effluent was over 1 mg/L. It was caused to a large amount of ICOD in influent. However, as P concnetration in influent was increased, the amounts of P release and uptake were increased linearly.

  • PDF

Effect of Several Native Moss Plants on Particulate Matter, Volatile Organic Compounds and Air Composition

  • Gong, Gyeong Yeop;Kang, Ji Su;Jeong, Kyeong Jin;Jeong, Jun Ho;Yun, Jae Gill
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • Experiments were carried out to investigate the effects of mosses on the removal of particulate matter (PM 10) and volatile organic compounds (VOCs) in an indoor space and on the composition of air. For particulate matter removal experiments, 0.2 g mosquitto coil was burned in a glass chamber, where three kinds of mosses (Plagiomnium cuspidatum, Myuroclada maximowiczii, Etodon luridus) were placed. For VOCs removal experiments, 1 mL paint thinner was volatilized in a glass chamber, where Plagiomnium cuspidatum and Myuroclada maximowiczii were used. As a result, it was found that particulate matter was effectively removed by the three mosses, and the removal efficiency of particulate matter increased as the amount of mosses increased. The amount of VOCs was similar to the level in the control when a low amount of mosses (2 and 4 plates) was used. However, the removal efficiency of VOCs was significant when 6 plates of mosses were used. On the other hand, formaldehyde concentration was 40 times more than the control and carbon monoxide 30 times, when 0.2 g of mosquito repellent was completely burned in a glass chamber. Also formaldehyde removal effect was significant when 6 plates of mosses were placed. However, there was no change in the concentration of indoor oxygen, temperature and humidity by moss plants. In conclusion, the moss plants were effective in removing particulate matter and VOCs, and they are expected to be used for indoor decoration and landscape in order to improve indoor air quality in the future.

The Hydraulic simulation and removal characteristics of Escherichia Coli for Ultraviolet rays.Ozone sterilization apparatus (자외선.오존 살균소독장치의 유체시뮬레이션 및 대장균 제거 특성)

  • Hwang, In-Ah;Lee, Hyun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.169-172
    • /
    • 2005
  • The simulation of Hydraulic pressure distribution of discharge tube with globular beads and the removal characteristic of Escherichia coli by the discharge tube with globular beads were estimated. The removal characteristic of Escherichia coli was related to the input voltage because the electric field is increased according to input voltage. As the passing amount of test water in discharge tube is increased, the removal ratio of Escherichia coli was increased because passing numbers of electric field section is increased.

  • PDF

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF