• Title/Summary/Keyword: Removal Torque Value

Search Result 58, Processing Time 0.024 seconds

The effect of a titanium socket with a zirconia abutment on screw loosening after thermocycling in an internally connected implant: a preliminary study (내부연결 임플란트용 타이타늄 소켓을 이용한 지르코니아 지대주에서 열순환이 나사풀림에 미치는 영향: 예비연구)

  • Kyung, Kyu-Young;Cha, Hyun-Suk;Lee, Joo-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.114-118
    • /
    • 2017
  • Purpose: The aim of this study was to investigate the effects of a titanium component for the zirconia abutment in the internal connection implant system on screw loosening under thermocycling conditions. Materials and Methods: Internal connection titanium abutments and external connection zirconia abutments with titanium sockets were connected respectively to screw-shaped internal connection type titanium implants with 30 Ncm tightening. These implant-screw-abutment assemblies were divided into two groups of five specimens each; titanium abutments as control and zirconia abutments with titanium sockets as experimental group. The specimens were subjected to 2,000 thermocycles in water baths at $5^{\circ}C$ and $55^{\circ}C$, with 60 seconds of immersion at each temperature. The removal torque values (RTVs) of the abutment screws of the specimen were measured before and after thermocycling. RTVs pre- and post-thermocycling were investigated in statistics. Results: There was not screw loosening identified by tactile and visual inspection in any of the specimens during or after thermocycling. The mean RTV difference for the control group and the experimental group were $-1.34{\pm}2.53Ncm$ and $-1.26{\pm}2.06Ncm$, respectively. Statistical analysis using an independent t-test revealed that no significant differences were found in the mean RTV difference of the groups (P > 0.05). Conclusion: Within the limitations of this in vitro study, the titanium socket for the zirconia abutment did not show a significant effect on screw loosening under thermal stress compared to the titanium abutment in the internal connection implant.

THE EFFECT OF DIFFERENT SURFACE TREATMENT ON THE OSSEOINTEGRATION AND STABILITY OF IMPLANTS (처리 방법이 다른 표면이 임플랜트의 골유착 및 안정성에 미치는 영향)

  • Yang, Seoung-Wook;Lim, Heon-Song;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.606-616
    • /
    • 2006
  • Purpose: This experiment examined the effect of different surface treatment on the osseointegration and stability of implants. Material and methods: In this study, 40 each of machined, SLA and RBM implants, which are the most commonly used implants, were implanted into the tibia of 20 normal rabbits using $OsseoCare^{TM}$. The rabbits were sacrificed after 1 week, 4 weeks, 8 weeks and 12 weeks for implant stability analysis, removal torque analysis, histologic and histomorphometric analysis. Result : ISQ showed significant difference between Machined and RBM at first week and at 4 weeks. There was significant difference between Machined and both SLA and RBM(p<0.05) but after 8 weeks there were no significant difference between each group. In the removal torque, RBM showd significantly higher values than SLA and Machined surface at 1st week. At 4th and 12th week, there was significant difference between Machined and SLA, RBM(p<0.05). In the bone to implant contact variable, there was no significant difference between each surface treatment method. In the Machined surface group, there was no significant difference between each time interval. but in SLA group, there were significant differences between the 1st week and 12th week and in RBM group, there were significant differences between the 1st week and 8th, 12th week and between 4th and 12th week(p<0.05). The bone area showed significantly higher values in SLA and RBM compared to Machined surface 1st and 8th week and significantly higher values in SLA than Machined surface at the 4th week(p<0.05). Conclusion: The roughened surface of implants showed positive effect in the early stages of implantation and assisted in bone formation After the bone formation stage, there was no statistical difference between Machined and roughened surface groups. In dental implantation, where initial stability is critical to the success of implants, the use of roughened surface implants should assist in reducing the healing period after implantation.

Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems (원추형 연결 임플란트에서 지대주 종류에 따른 나사풀림과 침하현상에 관한 연구)

  • Lee, Jin-Seon;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the effects of different abutment materials on abutment screw loosening and settling-down effect in conical connection type implant system. Materials and methods: Three types of abutment, cementation, gold UCLA, and metal UCLA abutment were used. Two UCLA groups were fabricated in a similar pattern to cementation abutment. Type III gold alloy and Nickel-Chromium alloy was used for casting gold UCLA abutment and metal UCLA abutment, respectively. Fixture and abutment were tightened to 30 Ncm by using digital torque controller and re-tightening was conducted with same force after 10 minutes. Digital torque gauge was used to measure loosening torque and fixture/abutment length was measured by digital micrometer. Dynamic loads between 25 N and 250 N were applied with $0^{\circ}$ angle to the abutment axis. After loading, fixture/abutment length was re-measured and amount of settlement was calculated. Loosening torque value was also measured for comparison Results: All three groups showed significant differences of length when comparing before and after loading, but there was no significant difference of settling amount in all groups. Loosening torque values were significantly decreased when comparing before and after loading in all groups($P$<.05). However, there was no significant difference in loss of loosening torque values when compared to groups. Conclusion: In internal conical connection type implants, dynamic load affected on settlement and loosening torque of implant, but there was no differences between abutments materials. Likewise gold UCLA abutment, metal UCLA abutment might be able to withstand functional load.

Removal Torque and Histometric Evaluations of Implants with Various Area of Hydroxyapatite Coating Placed in the Rabbit Tibia (토끼 경골에서 hydroxyapatite 코팅의 면적에 따른 임프란트의 뒤틀림 제거력과 조직계측학적 분석)

  • Moon, Sang-Kwon;Cho, Kyoo-Sung;Ahn, Sae-Youn;Lee, Hoon;Kim, Han-Sun;Shim, June-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.625-641
    • /
    • 2003
  • Background: This study presents a biomechanical and histometric comparison of bone response to implants with various area of hydroxyapatite(HA) coating. Methods: The implants were placed in the tibia of 10 rabbits weighing 2.5-3.5kg. The control group had a machined surface, the experimental group 1 had 50${\mu}m$ thick HA coated in a band form, and the experimental group 2 had 50${\mu}m$ thick HA coated on the entire surface. 8 weeks after implantation, the animals were sacrificed. Removal torque was measured and histologic preparation was also performed for histologic and histometric analysis. Bone to implant contact as well as percentage of bone area inside threads were measured. ANOVA post hoc, and t-test were used for statistical analysis with p-value p<0.05. Results: 1. The removal torques were 9.36${\pm}$5.64 Ncm, 48.40 ${\pm}$ 16.66 Ncm, and 82.37${\pm}$22.56 Ncm for the control, exp. 1, and exp. 2 group respectively. Statistically significant difference were found among all the groups(p<0.05). 2. Bone to implant contact in the cortical bone were 38.94${\pm}$10.9 %, 66.90${\pm}$14.1 %, 73.00${\pm}$19.4 %, in the marrow bone, 8.30${\pm}$5.4%, 14.59${\pm}$5.9%, 18.54${\pm}$11.8%, and in total, 22.40${\pm}$10.1%, 31,17${\pm}$7.5%, 41.41${\pm}$12.2% for the control, exp. 1, and exp. 2 group respectively . In the cortical bone, exp. 1, and exp. 2 group showed statistically significantly higher contact compared to control group. Total contact and in the marrow bone, only exp. 2 group showed statistically significantly higher contact compared to control group(p<0.05). In all the groups significantly higher contact were observed in the cortical bone compared to the marrow bone(p<0.05). 3. Percentage of bone area inside threads in the cortical bone were 55.68${\pm}$7.25%, 55.19${\pm}$13.19%, 57.04${\pm}$13.33%, in the marrow bone, 12.34${\pm}$14.61%, 17.56${\pm}$20.04%, 20.26${\pm}$12.83%, and in total, 30.30${\pm}$12.46%, 31.57 ${\pm}$15.15%, 34.25${\pm}$12.56% for the control, exp.1, and exp. 2 group respectively. There was no statistical difference among the groups. In all the groups significantly higher bone area were observed in the cortical bone compared to the marrow bone(p<0.05)

SURFACE CHANCE OF EXTERNAL HEXAGON OF IMPLANT FIXTURE AND INTERNAL HEXAGON OF ABUTMENT AFTER REPEATED DELIVERY AND REMOVAL OF ABUTMENT (지대주의 반복적인 착탈에 따른 임플랜트 고정체의 external hexagon과 지대주 internal hexagon의 변화에 관한 연구)

  • Jung Seok-Won;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.528-543
    • /
    • 2005
  • Statement of problem: Repeated delivery and removal of abutment cause some changes such as wear, scratch or defect of hexagonal structure. It may increase the value of rotational freedom(RF) between hexagonal structures. Purpose: The purpose of this study was to evaluate surface changes and rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment after repeated delivery and removal under SEM and toolmaker's microscope. Materials and methods: Implant systems used for this study were 3i and Avana. Seven pail's of implant fixture, abutment and abutment screws for each system were selected and all fixtures were perpendicularly mounted in liquid unsaturated polyesther with dental surveyor. Each one was embedded beneath the platform of fixture. Surfaces of hexagonal structure before repeated closing and opening of abutment were observed using SEM and rotational freedom was measured by using toolmaker's microscope. Each abutment was secured to the implant future by each abutment screw with recommended torque value using a digital torque controller and was repeatedly delivered and removed by 20 times respectively. After experiment, evaluation for the change of hexagonal structures and measurement of rotational freedom were performed. Result : The results were as follows; 1. Wear of contact area between implant fixture and abutment was considerable in both 3i and Avana system. Scratches and defects were frequently observed at the line-angle of hexagonal structures of implant fixture and abutment. 2. In the SEM view of the external hexagon of implant fixture, the point-angle areas at the corner edge of hexagon were severely worn out in both systems. It was more notable in the case of 3i systems than in that of Avana systems. 3. In the SEM view of the internal hexagon of abutment, Gingi-Hue abutment of 3i systems showed severe wear in micro-stop contacts that were machined into the corners to prevent rotation and cemented abutment of Avana systems showed wear in both surface area adjacent to the corner mating with external hexagon of implant fixture. 4 The mean values of rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment were 0.48$\pm$0.04$^{\circ}$ in pre-tested 3i systems and 1.18$\pm$0.25$^{\circ}$ after test, and 1.80$\pm$0.04$^{\circ}$ in pre-tested Avana systems and 2.61$\pm$0.16$^{\circ}$ after test. 5. Changes of rotational freedom after test shouted statistical)y a significant increase in both 3i and Avana systems(P<0.05, paired t-test). 6. Statistically, there was no significant difference between amount of increase in the rotational freedom of 3i systems and amount of increase in that of Avana ones(P>0.05, unpaired t-test). Conclusion: Conclusively, it was considered that repeated delivery and remove of abutment by 20 times would not have influence on screw joint stability. However, it caused statistically the significant change of rotational freedom in tested systems. Therefore, it is suggested that repeated delivery and remove of abutment should be minimal as possible as it could be and be done carefully Additionally, it is suggested that the means or treatment to prevent the wear of mating components should be devised.

ON THE SURFACE CHARACTERISTICS AND STABILITY OF IMPLANT TREATED WITH ANODIZING OXIDATION (양극산화 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Kim, Won-Sang;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.549-560
    • /
    • 2006
  • Purpose : This experiment examined the effects of anodization on commercially pure titanium implant fixtures. Material & methods : The implant fixtures were anodized at three different voltage levels, producing three different levels of oxidation on the surface of the fixure. Implant were divided into four groups according to the level of oxidation. Group 1 consist of the control group of machined surface implants, Group 2 implants were treated by anodizing to 100 voltage, Group 3 implants were treated by anodizing oxidation to 200 voltage Group 4 implants were treated by anodizing oxidation to 350 voltage. Surface morphology was observed by Scanning Electron Microscope(SEM) and the surface roughness was measured using NanoScan $E-1000^{\circledR}$. Implantation of the fixtures were performed using New Zealand white rabbits. $Periotest^{\circledR}$ value(PTV) resonance frequency analysis(RFA), and removal torque were measured in 0, 2, 4, 8, 12 weeks after implantation. Results : The results of the study were as follows: 1. Values for the measured surface roughness indicate statistically significant differences in Ra, Rq, and Rt values among group 1, 2, 3, and 4 at the top portion of the thread,(p<0.05) while values at the base of the threads indicated no significant difference in these values. 2. A direct correlation between the firming voltage, and surface roughness and irregularities were observed using scanning electron microscope. 3. No statistically significant differences were found between test groups regarding $Periotest^{\circledR}$ values. 4. Analysis of the data produced by RFA, significant differences were found between group 1 and group 4 at 12 weeks after implantation.(p<0.05) Conclusions : In conclusion, no significant differences could be found among test groups up to a certain level of forming voltage threshold, beyond this firming voltage threshold, statistically significant differences occurred as the surface area of the oxide layer increased with the increase in surface porosity, resulting in enhanced bone response and osseointegration.

Enhancement of bioactivity and osseointegration in Ti-6Al-4V orthodontic mini-screws coated with calcium phosphate on the TiO2 nanotube layer

  • Byeon, Seon-Mi;Kim, Hye-Ji;Lee, Min-Ho;Bae, Tae-Sung
    • The korean journal of orthodontics
    • /
    • v.52 no.6
    • /
    • pp.412-419
    • /
    • 2022
  • Objective: This study evaluated the effect of cyclic pre-calcification treatment on the improvement of bioactivity and osseointegration of Ti-6Al-4V mini-screws. Methods: The experimental groups were: an untreated group (UT), an anodized and heat-treated group (AH), and an anodized treatment followed by cyclic pre-calcification treatment group (ASPH). A bioactive material with calcium phosphate was coated on the mini-screws, and its effects on bioactivity and osseointegration were evaluated in in vitro and in vivo tests of following implantation in the rat tibia. Results: As a result of immersing the ASPH group in simulated body fluid for 2 days, protrusions appearing in the initial stage of hydroxyapatite precipitation were observed. On the 3rd day, the protrusions became denser, other protrusions overlapped and grew on it, and the calcium and phosphorus concentrations increased. The removal torque values increased significantly in the following order: UT group (2.08 ± 0.67 N·cm), AH group (4.10 ± 0.72 N·cm), and ASPH group (6.58 ± 0.66 N·cm) with the ASPH group showing the highest value (p < 0.05). In the ASPH group, new bone was observed that was connected to the threads, and it was confirmed that a bony bridge connected to the adjacent bone was formed. Conclusions: In conclusion, it was found that the surface treatment method used in the ASPH group improved the bioactivity and osseointegration of Ti-6Al-4V orthodontic mini-screws.

Influence of bearing surface angle of abutment screw on mechanical stability of joint in the conical seal design implant system (내부 원추형 연결형태 임플란트에서 지대주 나사머리의 좌면각도가 연결부 기계적 안정성에 미치는 영향)

  • Kim, Joo-Hyeun;Huh, Jung-Bo;Yun, Mi-Jung;Kang, Eun-Sook;Heo, Jae-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2014
  • This study is to evaluate how different bearing surface angles of abutment screw affect the mechanical stability of the joint in the conical seal design implant system. Materials and Methods: Internal connection type regular implants, two-piece cemented type abutments and tungsten carbide/carbon-coated titanium alloy abutment screws were selected. Titanium alloy screws with conical ($45^{\circ}$) and flat ($90^{\circ}$) head designs which fit on to abutment were fabricated. The abutments were tightened to implants with 30 Ncm by digital torque gauge. The loading was applied once to the central axis of abutment. The mean axial displacement was measured using micrometer before and after the tightening and loading (n = 5). The abutment was tightened to implants with 30 Ncm and T-shape stainless steel crown was cemented. Then the change in the amount of reverse-torque was measured after the repeated loading to the central axis, and the place 5 mm away from the central axis. Compressive bending and fatigue strength were measured at the place 5 mm away from the central axis (n = 5). Results: Both groups showed the largest axial displacement when abutment screw tightening and total displacement was greater in the flat head group compared to conical head group (P < 0.05). However, there were no significant differences in reverse torque value, compressive bending and fatigue strength (P > 0.05). Conclusion: Within the limitations of this study, the abutment screw head design had no effect on two groups regarding the joint stability, however the conical head design affected the settlement of abutment resulting in the reduced total displacement.