• Title/Summary/Keyword: Remote training

Search Result 326, Processing Time 0.025 seconds

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

A Comparison of Machine Learning Species Distribution Methods for Habitat Analysis of the Korea Water Deer (Hydropotes inermis argyropus) (고라니 서식지 분석을 위한 기계학습식 종분포모형 비교)

  • Song, Won-Kyong;Kim, Eun-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.171-180
    • /
    • 2012
  • The field of wildlife habitat conservation research has attracted attention as integrated biodiversity management strategies. Considering the status of the species surveying data and the environmental variables in Korea, the GARP and Maxent models optimized for presence-only data could be one of the most suitable models in habitat modeling. For make sure applicability in the domestic environment we applied the machine learning species distribution model for analyzing habitats of the Korea water deer($Hydropotes$ $inermis$ $argyropus$) in the $Sapgyocheon$ watershed, $Chungcheong$ province. We used the $3^{rd}$ National Natural Environment Survey data and 10 environment variables by literature review for the modelling. Analysis results showed that habitats for the Korea water deer were predicted 16.3%(Maxent) and 27.1%(GARP), respectively. In terms of accuracy(training/test) the Maxent(0.85/0.69) was higher than the GARP(0.65/0.61), and the Spearman's rank correlation coefficient result of the Maxent(${\rho}$=0.71, p<0.01) was higher than the result of GARP(${\rho}$=0.55, p<0.05). However results could be depended on sites and target species, therefore selection of the appropriate model considering on the situation will be important to analyzing habitats.

Development of a Soil Moisture Estimation Model Using Artificial Neural Networks and Classification and Regression Tree(CART) (의사결정나무 분류와 인공신경망을 이용한 토양수분 산정모형 개발)

  • Kim, Gwangseob;Park, Jung-A
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.155-163
    • /
    • 2011
  • In this study, a soil moisture estimation model was developed using a decision tree model, an artificial neural networks (ANN) model, remotely sensed data, and ground network data of daily precipitation, soil moisture and surface temperature. Soil moisture data of the Yongdam dam basin (5 sites) were used for model validation. Satellite remote sensing data and geographical data and meteorological data were used in the classification and regression tree (CART) model for data classification and the ANNs model was applied for clustered data to estimate soil moisture. Soil moisture data of Jucheon, Bugui, Sangjeon, Ahncheon sites were used for training and the correlation coefficient between soil moisture estimates and observations was between 0.92 to 0.96, root mean square error was between 1.00 to 1.88%, and mean absolute error was between 0.75 to 1.45%. Cheoncheon2 site was used for validation. Test statistics showed that the correlation coefficient, the root mean square error, the mean absolute error were 0.91, 3.19%, and 2.72% respectively. Results demonstrated that the developed soil moisture model using CART and ANN was able to apply for the estimation of soil moisture distribution.

Application of Bayesian Probability Rule to the Combination of Spectral and Temporal Contextual Information in Land-cover Classification (토지 피복 분류에서 분광 영상정보와 시간 문맥 정보의 결합을 위한 베이지안 확률 규칙의 적용)

  • Lee, Sang-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • A probabilistic classification framework is presented that can combine temporal contextual information derived from an existing land-cover map in order to improve the classification accuracy of land-cover classes that can not be discriminated well when using spectral information only. The transition probability is computed by using the existing land-cover map and training data, and considered as a priori probability. By combining the a priori probability with conditional probability computed from spectral information via a Bayesian combination rule, the a posteriori probability is finally computed and then the final land-cover types are determined. The method presented in this paper can be adopted to any probabilistic classification algorithms in a simple way, compared with conventional classification methods that require heavy computational loads to incorporate the temporal contextual information. A case study for crop classification using time-series MODIS data sets is carried out to illustrate the applicability of the presented method. The classification accuracies of the land-cover classes, which showed lower classification accuracies when using only spectral information due to the low resolution MODIS data, were much improved by combining the temporal contextual information. It is expected that the presented probabilistic method would be useful both for updating the existing past land-cover maps, and for improving the classification accuracy.

An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera (지상용 초분광 카메라를 이용한 소나무재선충병 감염목 분광 특성 분석)

  • Lee, Jung Bin;Kim, Eun Sook;Lee, Seung Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.665-675
    • /
    • 2014
  • In this paper spectral characteristics and spectral patterns of pine wilt disease at different development stage were analyzed in Geoje-do where the disease has already spread. Ground-based hyperspectral imaging containing hundreds of wavelength band is feasible with continuous screening and monitoring of disease symptoms during pathogenesis. The research is based on an hyperspectral imaging of trees from infection phase to witherer phase using a ground based hyperspectral camera within the area of pine wilt disease outbreaks in Geojedo for the analysis of pine wilt disease. Hyperspectral imaging through hundreds of wavelength band is feasible with a ground based hyperspectral camera. In this research, we carried out wavelength band change analysis on trees from infection phase to witherer phase using ground based hyperspectral camera and comparative analysis with major vegetation indices such as Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index (reNDVI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index 2 (ARI2). As a result, NDVI and reNDVI were analyzed to be effective for infection tree detection. The 688 nm section, in which withered trees and healthy trees reflected the most distinctions, was applied to reNDVI to judge the applicability of the section. According to the analysis result, the vegetation index applied including 688 nm showed the biggest change range by infection progress.

An Efficient VEB Beats Detection Algorithm Using the QRS Width and RR Interval Pattern in the ECG Signals (ECG신호의 QRS 폭과 RR Interval의 패턴을 이용한 효율적인 VEB 비트 검출 알고리듬)

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • In recent days, the demand for the remote ECG monitoring system has been increasing and the automation of the monitoring system is becoming quite of a concern. Automatic detection of the abnormal ECG beats must be a necessity for the successful commercialization of these real time remote ECG monitoring system. From these viewpoints, in this paper, we proposed an automatic detection algorithm for the abnormal ECG beats using QRS width and RR interval patterns. In the previous research, many efforts have been done to classify the ECG beats into detailed categories. But, these approaches have disadvantages such that they produce lots of misclassification errors and variabilities in the classification performance. Also, they require large amount of training data for the accurate classification and heavy computation during the classification process. But, we think that the detection of abnormality from the ECG beats is more important that the detailed classification for the automatic ECG monitoring system. In this paper, we tried to detect the VEB which is most frequently occurring among the abnormal ECG beats and we could achieve satisfactory detection performance when applied the proposed algorithm to the MIT/BIH database.

A Study of Establishment and application Algorithm of Artificial Intelligence Training Data on Land use/cover Using Aerial Photograph and Satellite Images (항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구)

  • Lee, Seong-hyeok;Lee, Moung-jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.871-884
    • /
    • 2021
  • The purpose of this study was to determine ways to increase efficiency in constructing and verifying artificial intelligence learning data on land cover using aerial and satellite images, and in applying the data to AI learning algorithms. To this end, multi-resolution datasets of 0.51 m and 10 m each for 8 categories of land cover were constructed using high-resolution aerial images and satellite images obtained from Sentinel-2 satellites. Furthermore, fine data (a total of 17,000 pieces) and coarse data (a total of 33,000 pieces) were simultaneously constructed to achieve the following two goals: precise detection of land cover changes and the establishment of large-scale learning datasets. To secure the accuracy of the learning data, the verification was performed in three steps, which included data refining, annotation, and sampling. The learning data that wasfinally verified was applied to the semantic segmentation algorithms U-Net and DeeplabV3+, and the results were analyzed. Based on the analysis, the average accuracy for land cover based on aerial imagery was 77.8% for U-Net and 76.3% for Deeplab V3+, while for land cover based on satellite imagery it was 91.4% for U-Net and 85.8% for Deeplab V3+. The artificial intelligence learning datasets on land cover constructed using high-resolution aerial and satellite images in this study can be used as reference data to help classify land cover and identify relevant changes. Therefore, it is expected that this study's findings can be used in the future in various fields of artificial intelligence studying land cover in constructing an artificial intelligence learning dataset on land cover of the whole of Korea.

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.