• Title/Summary/Keyword: Remote sensing technique

Search Result 729, Processing Time 0.025 seconds

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

EFFICIENCY AND COHERENCE IMPROVEMENT FOR MULTI APERTURE INTERFEROGRAM (MAl)

  • Jung, Hyung-Sup;Lee, Chang-Wook;Park, Wook;Kim, Sang-Wan;Nguyen, Van Trung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.629-632
    • /
    • 2007
  • While conventional interferometric SAR (InSAR) technique is an excellent tool for displacement observation, it is only sensitive to one-dimensional deformation along the satellite's line-of-sight (LOS). Recently, a multiple aperture interferogram (MAI) technique has been developed to overcome this drawback. This method successfully extracted along-track displacements from InSAR data, based on split-beam InSAR processing, to create forward- and backward- looking interferograms, and was superior to along-track displacements derived by pixel-offset algorithm. This method is useful to measure along-track displacements. However, it does not only decrease the coherence of MAI because three co-registration and resampling procedures are required for producing MAI, but also is confined to a suitable interferometric pair of SAR images having zero Doppler centroid. In this paper, we propose an efficient and robust method to generate MAI from interferometric pair having non-zero Doppler centroid. The proposed method efficiently improves the coherence of MAI, because the co-registration of forward- and backward- single look complex (SLC) images is carried out by time shift property of Fourier transform without resampling procedure. It also successfully removes azimuth flat earth and topographic phases caused by the effect of non-zero Doppler centroid. We tested the proposed method using ERS images of the Mw 7.1 1999 California, Hector Mine Earthquake. The result shows that the proposed method improved the coherence of MAI and generalized MAI processing algorithm.

  • PDF

Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model under Imbalanced Data (불균형 데이터 환경에서 로지스틱 회귀모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Kim, Bum-Kyu;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1353-1364
    • /
    • 2018
  • This study proposed a method to detect Cochlodinium polykrikoides red tide pixels in satellite images using a logistic regression model of machine learning technique under Imbalanced data. The spectral profiles extracted from red tide, clear water, and turbid water were used as training dataset. 70% of the entire data set was extracted and used for as model training, and the classification accuracy of the model was evaluated using the remaining 30%. At this time, the white noise was added to the spectral profile of the red tide, which has a relatively small number of data compared to the clear water and the turbid water, and over-sampling was performed to solve the unbalanced data problem. As a result of the accuracy evaluation, the proposed algorithm showed about 94% classification accuracy.

Comparison of vegetation recovery according to the forest restoration technique using the satellite imagery: focus on the Goseong (1996) and East Coast (2000) forest fire

  • Yeongin Hwang;Hyeongkeun Kweon;Wonseok Kang;Joon-Woo Lee;Semyung Kwon;Yugyeong Jung;Jeonghyeon Bae;Kyeongcheol Lee;Yoonjin Sim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.513-525
    • /
    • 2023
  • This study was conducted to compare the level of vegetation recovery based on the forest restoration techniques (natural restoration and artificial restoration) determined using the satellite imagery that targeted forest fire damaged areas in Goseong-gun, Gangwon-do. The study site included the area affected by the Goseong forest fire (1996) and the East Coast forest fire (2000). We conducted a time-series analysis of satellite imagery on the natural restoration sites (19 sites) and artificial restoration sites (12 sites) that were created after the forest fire in 1996. In the analysis of satellite imagery, the difference normalized burn ratio (dNBR) and normalized difference vegetation index (NDVI) were calculated to compare the level of vegetation recovery between the two groups. We discovered that vegetation was restored at all of the study sites (31 locations). The satellite image-based analysis showed that the artificial restoration sites were relatively better than the natural restoration sites, but there was no statistically significant difference between the two groups (p > 0.05). Therefore, it is necessary to select a restoration technique that can achieve the goal of forest restoration, taking the topography and environment of the target site into account. We also believe that in the future, accurate diagnosis and analysis of the vegetation will be necessary through a field survey of the forest fire-damaged sites.

A Study on Automated Lineament Extraction with Respect to Spatial Resolution of Digital Elevation Model (수치표고모형 공간해상도에 따른 선구조 자동 추출 연구)

  • Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.439-450
    • /
    • 2018
  • The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.

The Analysis of Spectral characteristics of Water Quality Factors Uisng Airborne MSS Data (Airborne MSS 자료를 이용한 수질인자의 분광특성 분석)

  • Dong-Ho Jang;Gi-Ho Jo;Kwang-Hoon Chi
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.296-306
    • /
    • 1998
  • Airborne MSS data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the radiance reflectance by using multi-spectral image of low resolution camera(LRC) which will be reached in the multi-purpose satellite(KOMPSAT) to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using high resolution remote sensing data such as Airborne MSS. Especially, we tried to extract environmental factors related with eutrophication such as chlorophyll-a, suspended sediments and turbidity, and also tried to develop the process technique and the radiance feature of reflectance related with eutrophication. Although it was difficult to explicitly correlate Airborne MSS data with water quality factors due to the insufficient number of ground truth data. The results were summarized as follows: First, the spectrum of sun's rays which reaches the surface of the earth was consistent with visible bands of 0.4${\mu}{\textrm}{m}$~0.7${\mu}{\textrm}{m}$ and about 50% of total quantity of radiation could be found. The spectrum was reached highest at around 0.5${\mu}{\textrm}{m}$ of green spectral band in visible bands. Second, as a result of the radiance reflectance Chlorophyll-a represented high mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and suspended sediments and turbidity represented high at 0.8${\mu}{\textrm}{m}$ and at 0.57${\mu}{\textrm}{m}$, respectively. Finally, as a result of the water quality analysis by using Airborne MSS, Chlorophyll-a could have a distribution image after carrying out ratio of B3 and B5 to B7. Band 7 was useful for making the distribution image of suspended sediments. When we carried out PCA, suspended sediments and turbidity had distributions at PC 1 and PC 4 which are similar to the ground data. Above results can be changed according to the change of season and time. Therefore, in order to analyze the environmental factors of water quality by using LRC data more exactly, we need to investigate the ground data and the radiance feature of reflectance of water bodies constantly. For further studies, we will constantly analyze the radiance feature of the surface of water in wafter bodies by measuring the on-the-spot radiance reflectance and using low resolution satellite image(SeaWiFS). We will also gather the data of water quality analysis in water bodies and analyze the pattern of water pollution.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Accuracy Assessment of Tide Models in Terra Nova Bay, East Antarctica, for Glaciological Studies of DDInSAR Technique (DDInSAR 기반의 빙하연구를 위한 동남극 테라노바 만의 조위모델 정밀도 평가)

  • Han, Hyangsun;Lee, Joohan;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Accuracy assessment of tide models in polar ocean has to be performed to accurately analyze tidal response of glaciers by using Double-Differential Interferometric SAR (DDInSAR) technique. In this study, we used 120 DDInSAR images generated from 16 one-day tandem COSMO-SkyMed DInSAR pairs obtained for 2 years and in situ tide height for 11 days measured by a pressure type wave recorder to assess the accuracy of tide models such as TPXO7.1, FES2004, CATS2008a and Ross_Inv in Terra Nova Bay, East Antarctica. Firstly, we compared the double-differential tide height (${\Delta}\dot{T}$) for Campbell Glacier Tongue extracted from the DDInSAR images with that predicted by the tide models. Tide height (T) from in situ measurement was compared to that of the tide models. We also compared 24-hours difference of tide height ($\dot{T}$) from in situ tide height with that from the tide models. The root mean square error (RMSE) of ${\Delta}\dot{T}$, T and $\dot{T}$ decreased after the inverse barometer effect (IBE)-correction of the tide models, from which we confirmed that the IBE of tide models should be corrected requisitely. The RMSE of $\dot{T}$ and ${\Delta}\dot{T}$ were smaller than that of T. This was because $\dot{T}$ is the difference of tide height during temporal baseline of the DInSAR pairs (24 hours), in which the errors from mean sea level of the tide models and in situ tide, and the tide constituents of $S_2$, $K_2$, $K_1$ and $P_1$ used in the tide models were canceled. This confirmed that $\dot{T}$ and ${\Delta}\dot{T}$ predicted by the IBE-corrected tide models can be used in DDInSAR technique. It was difficult to select an optimum tide model for DDInSAR in Terra Nova Bay by using in situ tide height measured in a short period. However, we could confirm that Ross_Inv is the optimum tide model as it showed the smallest RMSE of 4.1 cm by accuracy assessment using the DDInSAR images.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.