• 제목/요약/키워드: Remote sensing images

검색결과 1,715건 처리시간 0.035초

The Studies on Remote Sensing and Their Applications of Islands and Offshore Region Features from IKONOS Images

  • Zhou, Changbao;Huang, Weigen;Zhang, Huaguo;Teng, Junhua;Li, Dongling;Xiao, Qingmei
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.123-125
    • /
    • 2003
  • Satellite IKONOS images are one of important remote sensing data sources as today because of their very high spatial resolution. Their detections for islands and offshore oceanic features with multi-dimension and multi-scales information, specially some small islands, are of great potential. Their application abilities in islands and offshore detections are addressed at the first of the paper. And image processing technologies and the information extracting methodologies are described. Some results on remote sensing of the islands and their nearby object features are shown in details. Discussions and conclusions are carried out simply at the final.

  • PDF

A STORAGE AND RETRIEVAL SYSTEM FOR LARGE COLLECTIONS OF REMOTE SENSING IMAGES

  • Kwak Nohyun;Chung Chin-Wan;Park Ho-hyun;Lee Seok-Lyong;Kim Sang-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.763-765
    • /
    • 2005
  • In the area of remote sensing, an immense number of images are continuously generated by various remote sensing systems. These images must then be managed by a database system efficient storage and retrieval. There are many types of image database systems, among which the content-based image retrieval (CBIR) system is the most advanced. CBIR utilizes the metadata of images including the feature data for indexing and searching images. Therefore, the performance of image retrieval is significantly affected by the storage method of the image metadata. There are many features of images such as color, texture, and shape. We mainly consider the shape feature because shape can be identified in any remote sensing while color does not always necessarily appear in some remote sensing. In this paper, we propose a metadata representation and storage method for image search based on shape features. First, we extend MPEG-7 to describe the shape features which are not defined in the MPEG-7 standard. Second, we design a storage schema for storing images and their metadata in a relational database system. Then, we propose an efficient storage method for managing the shape feature data using a Wavelet technique. Finally, we provide the performance results of our proposed storage method.

  • PDF

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

The Application of Digital Watermarking in Remote Sensing Image

  • Jin, Peidong;Qin, Xuwen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1264-1267
    • /
    • 2003
  • To protect the digital image, video and audio from non-authorized use, the digital watermarking technology has received a great attention in the field of multimedia in recent years . An overview of the development of watermark techniques is given in the current paper followed by a discussion of potential application of spatial domain, transform domain watermark techniques in remote sensing images copyright protection and verification in different forms of processed images.

  • PDF

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

USING SATELLITE SYNTHETIC APERTURE RADAR IMAGERY TO MAP OIL SPILLS IN THE EAST CHINA SEA

  • Shi, Lijian;Ivanov, Andrei Yu.;He, Mingxia;Zhao, Chaofang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.981-984
    • /
    • 2006
  • Oil pollution of the ocean is a major environmental problem, especially in its coastal zones. Synthetic aperture radar (SAR) flown on satellites, such as ERS-2 and Envisat, has been proved to be a useful tool in oil spill monitoring due to its wide coverage, day and night, and all-weather capability. The total 120 SAR images containing oil spill over the East China Sea were collected and analyzed, ranging in date from July 23, 2002 to November 11, 2005. After preprocessed, SAR images were segmented by adaptive threshold method. The oil spill images were incorporated into GIS after distinguished from look-like phenomena, finally we presented the oil spills distribution map for the East China Sea. The wide-swath and quick-looks SAR imagery for mapping of oil spill distribution over large marine areas were proved to be useful when full resolution data are not available. After the temporal and spatial distribution of the oil spills were analyzed, we found that most of oil spills were distributed along the main ship routes, which means the illegal discharge by ships, and the occurrence of oil spill detected on SAR images acquired during morning and summer is much higher than during evening and winter.

  • PDF

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • 제8권2호
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.