• Title/Summary/Keyword: Remote sense images

Search Result 8, Processing Time 0.028 seconds

Analysis Land-use Changes of the Suomo Basin Based on Remote Sensing Images

  • Chen, Junfeng
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.702-707
    • /
    • 2002
  • Three periods of land-use maps of the Suomo Basin were drawn from topographic maps (1970a) and Landsat TM/ETM images (1986a and 1999a). The area of each kind of land use was calculated from the three maps. From 1970 to 1999, the area of forestland decreased 17%, the area of sparse forestland increased 8%, and the area of grassland increased 10%. The transferring trend of the land-use is that forestland turned into sparse forestland and brush land, and the brush land degenerated into grassland based on the transferring matrixes from 1970 to 1986, and from 1986 to 1999. According to the local government record and statistical data, forest cover rate had been increasing from 1970 to 1998, but the amount of growing stock had been declining. From 1957 to 1998, the amount of growing stock declined from 423m$^3$/ha to 177m$^3$/ha.

  • PDF

Variations of SST around Korea inferred from NOAA AVHRR data

  • Kang, Y. Q.;Hahn, S. D.;Suh, Y. S.;Park, S.J.
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.236-241
    • /
    • 1998
  • The NOAA AVHRR remote sense SST data, collected by the National Fisheries Research and Development Institute (NFRDI), are analyzed in order to understand the spatial and temporal distributions of SST in the seas adjacent to Korea. Our study is based on 10-day SST images during last 7 years (1991-1997). For a time series analysis of multiple 557 images, all of images must be aligned exactly at the same position by adjusting the scales and positions of each SST image. We devised an algorithm which yields automatic detections of cloud pixels from multiple SST images. The cloud detection algorithm is based on a physical constraint that SST anomalies in the ocean do not exceed certain limits (we used $\pm$ 3$^{\circ}C$ as a criterion of SST anomalies). The remote sense SST data are tuned by comparing remote sense data with observed SST at coastal stations. Seasonal variations of SST are studied by harmonic fit of SST normals at each pixel. The SST anomalies are studied by statistical method. We found that the SST anomalies are rather persistent with time scales between 1 and 2 months. Utilizing the persistency of SST anomalies, we devised an algorithm for a prediction of future SST Model fit of SST anomalies to the Markov process model yields that autoregression coefficients of SST anomalies during a time elapse of 10 days are between 0.5 and 0.7. We plan to improve our algorithms of automatic cloud pixel detection and prediction of future SST. Our algorithm is expected to be incorporated to the operational real time service of SST around Korea.

  • PDF

Development of a Method to Estimate Distribution of Paddy Fields in Southeast Asia Using Terra/ASTER Data

  • Sasaki, Gaku;Takeuchi, Wataru;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1180-1182
    • /
    • 2003
  • In Asian countries, paddy field is indispensable for our lives not only as a source of food but also ecosystem, hydrology, landscape, culture and global warming. In this sense it is necessary to get the detailed spatial distribution of paddy field in Asian region. Remote sensing seems to be the most appropriate tool to estimate paddy field. In this study, two Terra/ASTER images acquired on different date were used to get a map of paddy field with different planting. ASTER's 15-m resolution was found to be enough to be recognize individual paddy field . Paddies with different planting stages were divided into five types using their spectral patterns. As a result a map of paddies with different planting was obtained with tolerably high accuracy.

  • PDF

Analysis of Fusarium Wilt Based on Normalized Difference Vegetation Index for Radish Field Images from Unmanned Aerial Vehicle (무인기로 촬영한 무 재배지 영상의 정규식생지수(NDVI)를 활용한 병충해 분석 연구)

  • Im, Su-Hyeon;Hassan, Syed Ibrahim;Minh, Dang Lien;Min, Kyung-Bok;Moon, Hyeonjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1353-1357
    • /
    • 2018
  • This paper compares and analyzes Fusarium wilt of radish by using an unmanned aerial vehicle(UAV) with the NDVI-7 camera. The UAV have taken near-infrared images of the Radish field in Gangwon area, which is affected by Fusarium wilt. Based on those images, we analyzed NDVI(Normalized difference vegetation index) and compared conditions of radish by using the Blue value among Regular Vegetation Index in NDVI. First, the radish field is divided into three fields for radish, soil and vinyl. Each field has separate Blue values that are radish 0.4890, soil 0.2959, vinyl -0.0605 respectively. Second, radish condition levels are divided into four stages which are normal, early, middle, and late stage of Fusarium wilt. The average values of each stage are normal 0.5165(100%), early 0.4565(88%), middle 0.3444(66%), and late 0.1772(34%) respectively. This result shows that this NDVI value is validated by measuring conditions of Radish and soil.

Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements (드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증)

  • Baek, Seungil;Koh, Sooyoon;Lim, Taehong;Jeon, Gi-Seong;Do, Youngju;Jeong, Yujin;Park, Sohyeon;Lee, Yongtak;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.609-625
    • /
    • 2022
  • Validation of satellite data products is critical for subsequent analysis that is based on the data. Particularly, performance of ocean color products in turbid and shallow near-land ocean areas has been questioned for long time for its difficulty that stems from the complex optical environment with varying distribution of water constituents. Furthermore, validation with ship-based or station-based measurements has also exhibited clear limitation in its spatial scale that is not compatible with that of satellite data. This study firstly performed validation of major GOCI-II products such as remote sensing reflectance, chlorophyll-a concentration, suspended particulate matter, and colored dissolved organic matter, using the in-situ measurements collected from ship-based field campaign. Secondly, this study also presents preliminary analysis on the use of drone images for product validation. Multispectral images were acquired from a MicaSense RedEdge camera onboard a UAV to compensate for the significant scale difference between the ship-based measurements and the satellite data. Variation of water radiance in terms of camera altitude was analyzed for future application of drone images for validation. Validation conducted with a limited number of samples showed that GOCI-II remote sensing reflectance at 555 nm is overestimated more than 30%, and chlorophyll-a and colored dissolved organic matter products exhibited little correlation with in-situ measurements. Suspended particulate matter showed moderate correlation with in-situ measurements (R2~0.6), with approximately 20% uncertainty.

Water Quality Elements Extraction of Lake by the Landsat TM Images (Landsat TM 영상에 의한 호수의 수질인자 추출)

  • 최승필;양인태
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 1998
  • It is necessary to check the water quality of the lake on a continuous basis to determine the appearance of water pollution; however, it not only takes much time and expenses but it is considerably difficult to investigate the wide range of the area. If we use the remote sensing technique through the use of satellites, the status of water quality can be checked covering many wide areas simultaneously; and because the same area can be measured on a periodic basis, it is extremely effective in investigating the water quality. Furthermore, as some of the Landsat sensors carry characteristics which sense objects according to wave length, the distribution of water quality can be checked relatively accurately within a short period of time, while its image can be displayed in color. Hence, this research has attempted to extract water quality elements, such as transparency, water depth, and surface water temperature by utilizing the satellite data, and has prepared the water quality distribution image map of the Lake Hwajinpo by presenting the related empirical formula of the water quality elements. If the water quality distribution image map is prepared after extracting the water quality elements from the DN of the Landsat TM image and then carrying out TIN analysis through the use of GIS, relatively more accurate pattern can be learned covering a wide rage of area than the pattern presented based on the value obtained from actual observation.

  • PDF

A Study on Local Three-Dimensional Visualization Methodology for Effective Analysis of Construction Environments in Extreme Cold Regions (효과적인 극한지 건설환경 분석을 위한 현지 3차원 가시화 방안 연구)

  • Kim, Eui Myoung;Lee, Woo Sik;Hong, Chang Hee
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.129-137
    • /
    • 2012
  • For construction project in extreme cold region, it is essential to establish basic data on the site such as topographical data from the early stage of construction of planning and designing, and it is needed to frequently perform site investigation when necessary. However, extreme cold regions are characteristic of being at long distance and difficult in approaching, and special regions such as Antarctica, in particular, are hard to conduct site investigation. Although a site investigation may be conducted, those who can visit Antarctica are sufficiently limited so that most of the staff may participate in construction without knowledge of the site and increase the risk of errors in decision making or designing. In order to resolve such problems, the authors in this study identified methods of building wide-area topographical data and bedrock classification data of exposed areas via remote sensing and of building precise topographical data on the construction site. Also, the authors attempted to present methods by which such data can be managed and visualized integrally via three-dimensional GIS technology and all the participants in construction can learn sense of field and conduct necessary analysis as frequent as possible. The areas around the Jangbogo Antarctic Station were selected to be the research area for conducting effective integrational management and three-dimensional visualization of various spatial data such as wide-area digital elevation model, ortho-images, bedrock classification data, local precise digital elevation model, and site images. The results of this study may enable construction firms to analyze local environments for construction whenever they need for construction in extreme cold regions and then support construction work including decision making or designing.

Multi-screen Content Creation using Rig and Monitoring System (다면 콘텐츠 현장 촬영 시스템)

  • Lee, Sangwoo;Kim, Younghui;Cha, Seunghoon;Kwon, Jaehwan;Koh, Haejeong;Park, Kisu;Song, Isaac;Yoon, Hyungjin;Jang, Kyungyoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2017
  • Filming using multiple cameras is required for the production of the multi-screen content. It can fill the viewer's field of view (FOV) entirely to provide an increased sense of immersion. In such a filming scenario, it is very important to monitor how images captured by multiple cameras are displayed as a single content or how the content will be displayed in an actual theatre. Most recent studies on creating the content of special format have been focused on their own purposes, such as stereoscopic and panoramic images. There is no research on content creation optimized for theatres that use three screens that are spreading recently. In this paper, we propose a novel content production system with a rig that can control three cameras and monitoring software specialized for multi-screen content. The proposed rig can precisely control the angles between the cameras and capture wide angle of view with three cameras. It works with monitoring software via remote communication. The monitoring software automatically aligned the content in real time, and the alignment of the content is updated according to the angle of camera rig. Futher, the producion efficiency is greatly improved by making the alignment information available for post-production.