• Title/Summary/Keyword: Remote Sensing Information Models

Search Result 210, Processing Time 0.03 seconds

Application and Evaluation of Remotely Sensed Data in Semi-Distributed Hydrological Model (준 분포형 수문모형에서의 원격탐사자료의 적용 및 평가)

  • Kim, Byung-Sik;Kim, Kyung-Tak;Park, Jung-Sool;Kim, Hung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.144-159
    • /
    • 2006
  • Hydrological models are tools intended to realistically represent the basin's complex system in which hydrological characteristics result from a number of physical, vegetative, climatic, and anthropomorphic factors. Spatially distributed hydrological models were first developed in the 1960s, Remote sensing(RS) data and Geographical Information System(GIS) play a rapidly increasing role in the field of hydrology and water resources development. Although very few remotely sensed data can applied in hydrology, such information is of great. One of the greatest advantage of using RS data for hydrological modeling and monitoring is its ability to generate information in spatial and temporal domain, which is very crucial for successful model analysis, prediction and validation. In this paper, SLURP model is selected as semi-distributed hydrological model and MODIS Leaf Area Index(LAI), Normalized Difference Vegetation Index(NDVI) as Remote sensing input data to hydrological modeling of Kyung An-chen basin. The outlet of the Kyung An stage site was simulated, We evaluated two RS data, based on ability of SLURP model to simulate daily streamflows, and How the two RS data influence the sensitivity of simulated Evapotranspiration.

  • PDF

Extraction of Gravity-typed Accessibility Index using Remotely Sensed Imagery and Its Application (위성영상정보의 중력모델기반 접근성지수 추출연계 및 적용)

  • Lee, Kiwon;Oh, Se Gyong;Lee, Bong Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.61-72
    • /
    • 2003
  • Recently, demands with practical applications using high resolution imagery are increasing, according to addressing new sensor data. Since late 1990s, attempts for application to transportation problems of satellite imagery data have been intensively carried out in US, and these kinds of studies are being categorized into the name of RS-T(remote sensing in transportation). Further, this study is also linked with GIS-T(GIS for transportation), being in the matured stage, and then it contributes to wide uses of remotely sensed imagery. In this study, RS-T is briefly summarized. Later, in order to apply urban transportation analysis with satellite imagery as ancillary data, implementation, as prototyped extension program, for extraction of gravity-typed accessibility indices of transportation geography is performed in the ArcView-GIS environment. It is thought that applied results by two models among implemented models in this study can be utilized to characterize transportation accessibility in a region and to apply as useful statistics related to urban transportation status for regional transportation planning, if time series data are used.

  • PDF

Forest Digital Twin Implementation Study for 3D Forest Geospatial Information Service (3차원 산림공간정보 서비스를 위한 산림 디지털트윈 구현 연구)

  • In-Ha Choi;Sang-Kwan Nam;Seung-Yub Kim;Dong-Gook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1165-1172
    • /
    • 2023
  • Recently, Korea has declared carbon neutrality by 2050. The Korea Forest Service is promoting the precision and high technology of forest resource surveys. As such, the demand for forest resource management is increasing, and the need to build a digital twin of forest space is increasing. However, to date, digital twin has only built and provided virtual city services, which are city and nationwide digital twin environments. Three-dimensional digital twin services targeting forest space are not operated and provided. Therefore, in this study, we aimed to implement a forest digital twin environment to provide 3D forest spatial information services corresponding to vertical information such as tree-level height and thorax diameter. By lightweighting realistic 3D tree models and applying 3D Tiles, we confirmed the feasibility of implementing a forest digital twin environment for 3D forest spatial information services. Through continuous research, we plan to implement a forest digital twin that can deploy and service 3D tree models for trees nationwide, including street trees in urban areas. This is expected to enable the development of forest digital twin services for forest resource management.

ISO/IEC 9126 Quality Model-based Assessment Criteria for Measuring the Quality of Big Data Analysis Platform (빅데이터 분석 플랫폼 평가를 위한 ISO/IEC 9126 품질 모델 기반 평가준거 개발)

  • Lee, Jong Yun
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.459-467
    • /
    • 2015
  • The analysis platform of remote-sensing big data is a system that downloads data from satellites, transforms it to a data type of L3, and then analyzes it and produces its analysis results. The objective of this paper is to develop ISO/IEC 9126-1 software quality model-based assessment criteria, in order to evaluate the quality of remote-sensing big data analysis platform. Its detailed research contents are as follows. First, the ISO/IEC 9216 standards and previous software evaluation models will be reviewed. Second, this paper will define evaluation areas, evaluation elements, and evaluation items for measuring the quality of big data analysis platform. Third, the validity of the assessment criteria will be verified by statistical experiments through content validity, reliability validity, and construct validity, by using SPSS 20.0 and Amos 20.0 software. The construct validity will also be conducted by performing the confirmatory factor analysis and path analysis. Lastly, it is significant that our research result demonstrates the first evaluation criteria in measuring the quality of big data analysis platform. It is also expected that our assessment criteria could be used as the basis information for evaluation criteria in the platforms that will be developed in the future.

Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images (고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구)

  • Kim, Yeseul;Lee, Kwang-Jae;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1931-1942
    • /
    • 2021
  • As the utility of an optical satellite image with a high spatial resolution (i.e., fine-scale) has been emphasized, recently, various studies of the land surface monitoring using those have been widely carried out. However, the usefulness of fine-scale satellite images is limited because those are acquired at a low temporal resolution. To compensate for this limitation, the spatiotemporal data fusion can be applied to generate a synthetic image with a high spatio-temporal resolution by fusing multiple satellite images with different spatial and temporal resolutions. Since the spatio-temporal data fusion models have been developed for mid or low spatial resolution satellite images in the previous studies, it is necessary to evaluate the applicability of the developed models to the satellite images with a high spatial resolution. For this, this study evaluated the applicability of the developed spatio-temporal fusion models for KOMPSAT-3A and Sentinel-2 images. Here, an Enhanced Spatial and Temporal Adaptive Fusion Model (ESTARFM) and Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM), which use the different information for prediction, were applied. As a result of this study, it was found that the prediction performance of STGDFM, which combines temporally continuous reflectance values, was better than that of ESTARFM. Particularly, the prediction performance of STGDFM was significantly improved when it is difficult to simultaneously acquire KOMPSAT and Sentinel-2 images at a same date due to the low temporal resolution of KOMPSAT images. From the results of this study, it was confirmed that STGDFM, which has relatively better prediction performance by combining continuous temporal information, can compensate for the limitation to the low revisit time of fine-scale satellite images.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

DEVELOPMENT OF DATA INTEGRATION AND INFORMATION FUSION INFRASTRUCTURE FOR EARTH OBSERVATION

  • Takagi Mikio;Kltsuregawa Masaru;Shibasaki Ryousuke;Ninomiya Seishi;Koike Toshio
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.22-25
    • /
    • 2005
  • The 10 Year Implementation Plan for a Global Earth Observation System of Systems (GEOSS), which was endorsed at the Third Earth Observation Summit in Brussels in February, 2005, emphasizes the importance of data management facilities for diverse and large-volume Earth Observation data from inhomogeneous information sources. A three year research plan for addressing this key target of GEOSS has just approved as the first step by the Japanese government. The goals of this research are, (1) to develop a data management core system consisting of data integration and information fusion functions and interoperability and information service functions; (2) to establish data and information flows between data providers and users; (3) to promote application studies of data integration and information fusion, especially in the fields of weather forecasting, flood forecasting, agricultural management, and climate variability and changes. The research group involves leading scientists on information science and technology, who have been developing giant data archive servers, storage area networks, metadata models, ontology for the earth observations. They are closely cooperating with scientists on earth sciences, water resources management, and agriculture, and establishing an effective collaborative research framework.

  • PDF

Analysis of Geolocation Accuracy of KOMPSAT-3 Imagery (KOMPSAT-3 영상의 기하정확도 분석)

  • Jeong, Jaehoon;Kim, Jaein;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • This paper reports the geolocation accuracy of KOMPSAT-3 imagery. KOMPSAT-3 was launched successfully on May 18, 2012 and has been released last March. In this paper, we have checked the geolocation accuracy of initial sensor model, precise sensor model and stereo-and multi-image model using four KOMPSAT-3 images covering the same area. The KOMPSAT-3 images without GCPs provided the geolocation accuracy of about 30m and the geocorrected KOMPSAT-3 images provided the geolocation accuracy of about 1m or less. KOMPSAT-3 stereo- and multi-images models yield threedimensional points with sub-meter accuracy in horizontal and vertical direction. Overall, KOMPSAT-3 showed much improved performance in terms of the geolocation accuracy over KOMPSAT-2. KOMPSAT-3 is expected to be able to replace foreign satellite data with sub-meter accuracy level for achieving accurate geometric information.

Assessment of Trophic State for Yongdam Reservoir Using Satellite Imagery Data (인공위성 영상자료를 이용한 용담호의 영양상태 평가)

  • Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • The conventional water quality measurements by point sampling provide only site specific temporal water quality information but not the synoptic geographic coverage of water quality distribution. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly involved in the water quality monitoring research. In other to assess a trophic state of Yongdam reservoir using satellite imagery data, I obtained Landsat ETM data and water quality data on 16th September and 18th October 2001. The approach involved acquisition of water quality samples from boats at 33 sites on 16th September and 30 sites on 18th October 2001, simultaneous with Landsat-7 satellite overpass. The correlation coefficients between the DN values of the imagery and the concentrations of chlorophyll-a were analyzed. The visible bands(band 1,2,3) and near infrared band(band 4) data of September image showed the correlation coefficient values higher than 0.9. The October image showed the correlation coefficient values about 0.7 due to the atmospheric effect and low variation of chlorophyll-a concentration. Regression models between the chrophyll-a concentration and DN values of the Landsat imagery data have been developed for each image. The regression model was determined based on the spectral characteristics of chlorophyll, so the green band(band 2) and near infrared band(band 4) were selected to generate a trophic state map. The coefficient of determination(R2) of the regression model for 16th September was 0.95 and that of the regression model for 18th October was 0.55. According to the trophic state map made based on Aizaki's TSI and chlorophyll-a concentration, the trophic state of Yongdam reservoir was mostly eutrophic state during this study.