• Title/Summary/Keyword: Remote Sensing Imagery

Search Result 822, Processing Time 0.028 seconds

Monitoring canopy phenology in a deciduous broadleaf forest using the Phenological Eyes Network (PEN)

  • Choi, Jeong-Pil;Kang, Sin-Kyu;Choi, Gwang-Yong;Nasahara, Kenlo Nishda;Motohka, Takeshi;Lim, Jong-Hwan
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • Phenological variables derived from remote sensing are useful in determining the seasonal cycles of ecosystems in a changing climate. Satellite remote sensing imagery is useful for the spatial continuous monitoring of vegetation phenology across broad regions; however, its applications are substantially constrained by atmospheric disturbances such as clouds, dusts, and aerosols. By way of contrast, a tower-based ground remote sensing approach at the canopy level can provide continuous information on canopy phenology at finer spatial and temporal scales, regardless of atmospheric conditions. In this study, a tower-based ground remote sensing system, called the "Phenological Eyes Network (PEN)", which was installed at the Gwangneung Deciduous KoFlux (GDK) flux tower site in Korea was introduced, and daily phenological progressions at the canopy level were assessed using ratios of red, green, and blue (RGB) spectral reflectances obtained by the PEN system. The PEN system at the GDK site consists of an automatic-capturing digital fisheye camera and a hemi-spherical spectroradiometer, and monitors stand canopy phenology on an hourly basis. RGB data analyses conducted between late March and early December in 2009 revealed that the 2G_RB (i.e., 2G - R - B) index was lower than the G/R (i.e., G divided by R) index during the off-growing season, owing to the effects of surface reflectance, including soil and snow effects. The results of comparisons between the daily PEN-obtained RGB ratios and daily moderate-resolution imaging spectroradiometer (MODIS)-driven vegetation indices demonstrate that ground remote sensing data, including the PEN data, can help to improve cloud-contaminated satellite remote sensing imagery.

The Comparison of the SIFT Image Descriptor by Contrast Enhancement Algorithms with Various Types of High-resolution Satellite Imagery

  • Choi, Jaw-Wan;Kim, Dae-Sung;Kim, Yong-Min;Han, Dong-Yeob;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • Image registration involves overlapping images of an identical region and assigning the data into one coordinate system. Image registration has proved important in remote sensing, enabling registered satellite imagery to be used in various applications such as image fusion, change detection and the generation of digital maps. The image descriptor, which extracts matching points from each image, is necessary for automatic registration of remotely sensed data. Using contrast enhancement algorithms such as histogram equalization and image stretching, the normalized data are applied to the image descriptor. Drawing on the different spectral characteristics of high resolution satellite imagery based on sensor type and acquisition date, the applied normalization method can be used to change the results of matching interest point descriptors. In this paper, the matching points by scale invariant feature transformation (SIFT) are extracted using various contrast enhancement algorithms and injection of Gaussian noise. The results of the extracted matching points are compared with the number of correct matching points and matching rates for each point.

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

Combination of fuzzy models via economic management for city multi-spectral remote sensing nano imagery road target

  • Weihua Luo;Ahmed H. Janabi;Joffin Jose Ponnore;Hanadi Hakami;Hakim AL Garalleh;Riadh Marzouki;Yuanhui Yu;Hamid Assilzadeh
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.531-548
    • /
    • 2024
  • The study focuses on using remote sensing to gather data about the Earth's surface, particularly in urban environments, using satellites and aircraft-mounted sensors. It aims to develop a classification framework for road targets using multi-spectral imagery. By integrating Convolutional Neural Networks (CNNs) with XGBoost, the study seeks to enhance the accuracy and efficiency of road target identification, aiding urban infrastructure management and transportation planning. A novel aspect of the research is the incorporation of quantum sensors, which improve the resolution and sensitivity of the data. The model achieved high predictive accuracy with an MSE of 0.025, R-squared of 0.85, RMSE of 0.158, and MAE of 0.12. The CNN model showed excellent performance in road detection with 92% accuracy, 88% precision, 90% recall, and an f1-score of 89%. These results demonstrate the model's robustness and applicability in real-world urban planning scenarios, further enhanced by data augmentation and early stopping techniques.

Class Knowledge-oriented Automatic Land Use and Land Cover Change Detection

  • Jixian, Zhang;Yu, Zeng;Guijun, Yang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.47-49
    • /
    • 2003
  • Automatic land use and land cover change (LUCC) detection via remotely sensed imagery has a wide application in the area of LUCC research, nature resource and environment monitoring and protection. Under the condition that one time (T1) data is existed land use and land cover maps, and another time (T2) data is remotely sensed imagery, how to detect change automatically is still an unresolved issue. This paper developed a land use and land cover class knowledge guided method for automatic change detection under this situation. Firstly, the land use and land cover map in T1 and remote sensing images in T2 were registered and superimposed precisely. Secondly, the remotely sensed knowledge database of all land use and land cover classes was constructed based on the unchanged parcels in T1 map. Thirdly, guided by T1 land use and land cover map, feature statistics for each parcel or pixel in RS images were extracted. Finally, land use and land cover changes were found and the change class was recognized through the automatic matching between the knowledge database of remote sensing information of land use & land cover classes and the extracted statistics in that parcel or pixel. Experimental results and some actual applications show the efficiency of this method.

  • PDF

Study on the Relationship between the Forest Canopy Closure and Hyperspectral Signatures

  • Lin, Chinsu;Chang, Chein-I
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.72-74
    • /
    • 2003
  • Forest canopy density is an ideal representative of the forest habitat situations. It can directly or indirectly depict the canopy structure and gap size in the forestland, thus could be applied to assessment of wildlife’s diversit y. Since population survey of vegetation and wildlife diversities is a key issue for sustainable forest ecosystem management, many research efforts have been focused on forest canopy density using multispectral data in the last two decades. Unfortunately, prediction of canopy density using large scaling remote sensing data remains a challenging issue. Due to recent advances in hyperspectral image sensors hyperspectral imagery is now available for environmental monitoring. In this paper, we conduct experiments to monitor complicated environments of forestland that can be captured by using hyperspectral imagery and further be analyzed to test a prediction model of forest canopy density. The results show that 95% of canopy density could be well described by using 2 difference vegetation indices (DVIs), which are difference of blue and green reflectances rband_100-rband_150 and difference of 2 short wave infrared reflectancse rband_406-rband_410 With the wavelengths of band no. 100, 150, 406, and 410 specified by 462.39 nm, 534.40 nm, 918.22 nm and 924.41 nm respectively.

  • PDF

Airborne Remote Sensing of Evapotranspiration over Rice Paddy

  • Chen, Y.Y.;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.351-353
    • /
    • 2003
  • We present a retrieval scheme for the remote sensing of evapotranspiration (ET) over rice paddy. To perform the retrieval, high-resolution airborne imagery of multi-spectral visible and thermal infrared data, and ground-based meteorological measurements are utilized. Our ET retrieval scheme is based on the basic principal of surface energy budget, which is a result of balance in longwave and shortwave radiation, latent heat, sensible heat, and energy flux into the ground. To partition the latent and sensible heat fluxes of interest from the energy balance equation, three basic parameters are of most concern, including albedo, surface temperature, and normalized difference vegetation index (NDVI). The NDVI and albedo can be easily derived from the visible and near infrared spectral data, while the surface tem-perature can be determined through the analysis of the infrared data with the Stefan Boltzmann law. From the airborne imagery taken on 28 April 2003, we observe very good dry and wet pixels that can be easily corre-sponded to the radiation and evaporation controlled crite-ria, respectively, and, hence, for the further use in defin-ing the evaporative fraction needed to partition sensible and latent heat fluxes from the net energy flux. The de-rived ET is compared with the in situ measurements.

  • PDF

An efficient ship detection method for KOMPSAT-5 synthetic aperture radar imagery based on adaptive filtering approach

  • Hwang, JeongIn;Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.89-95
    • /
    • 2017
  • Ship detection in synthetic aperture radar(SAR)imagery has long been an active research topic and has many applications. In this paper,we propose an efficient method for detecting ships from SAR imagery using filtering. This method exploits ship masking using a median filter that considers maximum ship sizes and detects ships from the reference image, to which a Non-Local means (NL-means) filter is applied for speckle de-noising and a differential image created from the difference between the reference image and the median filtered image. As the pixels of the ship in the SAR imagery have sufficiently higher values than the surrounding sea, the ship detection process is composed primarily of filtering based on this characteristic. The performance test for this method is validated using KOMPSAT-5 (Korea Multi-Purpose Satellite-5) SAR imagery. According to the accuracy assessment, the overall accuracy of the region that does not include land is 76.79%, and user accuracy is 71.31%. It is demonstrated that the proposed detection method is suitable to detect ships in SAR imagery and enables us to detect ships more easily and efficiently.

Development of Cloud Detection Algorithm for Extracting the Cloud-free Land Surface from Daytime NOAA/AVHRR Data (NOAA/AVHRR 주간 자료로부터 지면 자료 추출을 위한 구름 탐지 알고리즘 개발)

  • 서명석;이동규
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.239-251
    • /
    • 1999
  • The elimination process of cloud-contaminated pixels is one of important steps before obtaining the accurate parameters of land and ocean surface from AVHRR imagery. We developed a 6step threshold method to detect the cloud-contaminated pixels from NOAA-14/AVHRR datime imagery over land using different combination of channels. This algorithm has two phases : the first is to make a cloud-free characteristic data of land surface using compositing techniques from channel 1 and 5 imagery and a dynamic threshold of brightness temperature, and the second is to identify the each pixel as a cloud-free or cloudy one through 4-step threshold tests. The merits of this method are its simplicity in input data and automation in determining threshold values. The threshold of infrared data is calculated through the combination of brightness temperature of land surface obtained from AVHRR imagery, spatial variance of them and temporal variance of observed land surface temperature. The method detected the could-comtaminated pixels successfully embedded inthe NOAA-14/AVHRR daytime imagery for the August 1 to November 30, 1996 and March 1 to July 30, 1997. This method was evaluated through the comparison with ground-based cloud observations and with the enhanced visible and infrared imagery.

SUBPIXEL UNMIXING TECHNIQUE FOR DETECTION OF USEFUL MINERAL RESOURCES USING HYPERSPECTRAL IMAGERY

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.66-67
    • /
    • 2008
  • Most mineral resources are located in subsurface but mineral exploration starts with a step of investigation in wide-area to find evidence of buried ores. Conventional technique for exploration on wide-area as a preliminary survey is an observation using naked eyes by geologist or chemical analysis using lots of samples obtained from target area. Hyperspectral remote sensing can overcome those subjective and time consuming survey and can produce mineral resources distribution map. Precise resource map requires information of mineral distribution in a subpixellevel because mineral is distributed as rock components or narrow veins. But most hyperspectral data is composed of pixels of several meters or more than ten meters scale. We reviewed subpixel unmixing algorithms which have been used for geological field and tested detection ability with Hyperion imagery, geological map and seven spectral curves of mineral and rock specimens which were obtained from study areas.

  • PDF