• Title/Summary/Keyword: Remote Meter Reading

Search Result 56, Processing Time 0.024 seconds

Development a Distributed Power Information System Based on Event using XML (XML을 이용한 이벤트 기반 분산 전력 정보 시스템 개발)

  • Kim, Jung-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.89-96
    • /
    • 2009
  • In the future energy environment, a power information system will meet the real-time capability to process the emergency events, unexpected blackouts or over-load, and the high performance to provide the consumer service events such as remote meter reading. In addition to, it must have facility which is able to process a large information occurred on system effectively. In this paper, we developed a distributed power information system based on event with metadata processing technique which was both load balancing and decreased hot spot using XML that was efficient for information exchange. In order to experiment, we made a reduced future power system with controling power device using wireless communications and we could do experiments through it.

Implementation of Intelligent Home Network System using Wireless Sensor (무선센서를 이용한 지능형 홈네트워크 시스템 구현)

  • Ju, Jae-han;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.294-299
    • /
    • 2017
  • Home network service is evolving into a service that can receive contents such as remote education, home automation, remote meter reading and various entertainment anytime and anywhere by connecting all household appliances in home with wired and wireless network. In this paper, an intelligent home gateway installed at home is connected to the mobile communication terminal from the outside to solve the problems of the existing home network and configure and maintain a more efficient and comfortable home network environment for the user, In the window, the login page is activated to confirm the user access authority, and the user proceeds the authentication procedure through own login information. When the normal authentication procedure is performed, the intelligent home gateway maintains only the network connection with the user, and the user presents the intelligent home network system using the RFID which is accessed by the intelligent home network system.

AMI Network Failure Analysis based on Graph Database (그래프 데이터베이스 기반 AMI 네트워크 장애 분석)

  • Jeong, Woo-Cheol;Jun, Moon-Seog;Choi, Do-Hyeon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.41-48
    • /
    • 2020
  • Recently, the spreading business of AMI (Advanced Metering Infrastructure) remote metering systems in various regions of the country has been activated, and it provides various metering functions such as two-way communication and security plan functions for power demand management. Current AMI system is difficult to analyze based on the existing RDB(Relational Database) due to the increase in the size of new internal IoT devices and networks. This study proposes a new GDB(Graph Database) based failure analysis method that utilizes existing RDB data. It analyzes the correlation of new failure patterns through accumulated data such as internal thresholds and status values. As a result of GDB-based simulation, it was confirmed that RDB can predict to a new obstacle pattern that was difficult to analyze.

Temporal Classification Method for Forecasting Power Load Patterns From AMR Data

  • Lee, Heon-Gyu;Shin, Jin-Ho;Park, Hong-Kyu;Kim, Young-Il;Lee, Bong-Jae;Ryu, Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2007
  • We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

Evaluation of the Amount of Nitrogen Top Dressing Based on Ground-based Remote Sensing for Leaf Perilla (Perilla frutescens) under the Polytunnel House

  • Kang, Seong-Soo;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.598-607
    • /
    • 2016
  • This study was conducted to evaluate the amount of nitrogen (N) top dressing based on the normalized difference vegetation indices (NDVI) by ground based sensors for leaf perilla under the polyethylene house. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization with 3 and 4 replications in Gumsan-gun and Milyang-si field, respectively. Dry weight (DW), concentration of N, and amount of N uptake by leaf perilla as well as NDVIs from sensors were measured monthly. Difference of growth characteristics among treatments in Gumsan field was wider than Milyang. SPAD-502 chlorophyll meter reading explained 43.4% of the variability in N content of leaves in Gumsan field at $150^{th}$ day after seedling (DAS) and 45.9% in Milyang at $239^{th}$ DAS. Indexes of red sensor (RNDVI) and amber sensor (ANDVI) at $172^{th}$ day after seedling (DAS) in Gumsan explained 50% and 57% of the variability in N content of leaves. RNDVI and ANDVI at $31^{th}$ DAS in Milyang explained 60% and 65% of the variability in DW of leaves. Based on the relationship between ANDVI and N application rate, ANDVI at $172^{th}$ DAS in Gumsan explained 57% of the variability in N application rate but non significant relationship in Milyang field. Average sufficiency index (SI) calculated from ratio of each measurement index per maximum index of ANDVI at $172^{th}$ DAS in Gumsan explained 73% of the variability in N application rate. Although the relationship between NDVIs and growth characteristics was various upon growing season, SI by NDVIs of ground based remote sensors at top dressing season was thought to be useful index for recommendation of N top dressing rate of leaf perilla.

A Research on the Promotion of AMI Supply by the Development of 1:N Mounted Remote Meter Reading Device (1:N HUB 기능을 가진 원격검침 단말기 개발에 따른 AMI 보급 추진 방안 연구)

  • Lee, Hyoung-Min;Kim, Min-Gi;Choi, Eun-Il;Yoon, Chan-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, we developed AMI terminals of 1 (reader): N (small transmitter). Currently, the government is focusing on the Gas AMI demonstration project to advance the outdated metering system of the urban gas industry, led by the government-sponsored ministries. The supply of gas AMI meters has the advantage of resolving uncertainties in privacy violations and measurement information and preparing for consumer safety through gas leakage detection. In the case of existing AMI meters, readers and transmitters were 1:1 methods, while this technology can be extended to multiple generations with a 1:N method, and a technology that can extend battery life by implementing a low-power design is applied. We hope that this research will contribute to the gas AMI supply project in the future.