• Title/Summary/Keyword: Remote Mesh Generation

Search Result 4, Processing Time 0.027 seconds

A Development and Performance Test of Voltage Measurement Accuracy Assessment System for Distribution Equipment (배전기기 전압계측 정밀도 평가시스템 개발 및 성능시험)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Kim, Jae-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.83-89
    • /
    • 2013
  • Power distribution system has been changed from radial system to closed loop or mesh system due to connection of distributed generation growth. Data from distribution equipments which are installed at distribution line is required to be accurate for the performance of DMS(Distribution Management System). This paper analyzes the voltage measurement data from distribution equipment. However, the results of the analysis are confirmed to have some errors in voltage measurement data from distribution equipment. These errors come from aging of voltage sensor in distribution equipment and inaccurate data transfer to FRTU(feeder remote terminal unit) through the controller. The main problem is that the voltage measurement data of distribution equipment can not be assessed after it's first installation at the distribution line. The voltage measurement accuracy assessment system is to assess the voltage measurement data from distribution equipment on hot-line. This study had a field test to verify the performance of system.

Cloud Computing-Based Processing of Large Volume UAV Images Acquired in Disaster Sites (재해/재난 현장에서 취득한 대용량 무인기 영상의 클라우드 컴퓨팅 기반 처리)

  • Han, Soohee
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1027-1036
    • /
    • 2020
  • In this study, a cloud-based processing method using Agisoft Metashape, a commercial software, and Amazon web service, a cloud computing service, is introduced and evaluated to quickly generate high-precision 3D realistic data from large volume UAV images acquired in disaster sites. Compared with on-premises method using a local computer and cloud services provided by Agisoft and Pix4D, the processes of aerial triangulation, 3D point cloud and DSM generation, mesh and texture generation, ortho-mosaic image production recorded similar time duration. The cloud method required uploading and downloading time for large volume data, but it showed a clear advantage that in situ processing was practically possible. In both the on-premises and cloud methods, there is a difference in processing time depending on the performance of the CPU and GPU, but notso much asin a performance benchmark. However, it wasfound that a laptop computer equipped with a low-performance GPU takes too much time to apply to in situ processing.

State-of-the-art 3D GIS: System Development Perspectives

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.153-158
    • /
    • 1998
  • Since the mid-1990′s, researches on 3D GIS have been regarded as one of main issues both in the academic sites and commercial vendors; recently, some prototyped systems or the first versioned software systems of commercial basis are being reported and released. Unlike conventional 2D GIS, which consists in intelligent structured GIS or desktop GIS, every 3D GIS has its own distinguished features according to data structure-supporting capability, GIS-styled functionality, external database accessibility, interfacing extents with 2D GIS, 3D visualization/texture mapping ability, and so forth. In this study, technical aspects related to system development, SERI-Web3D GIS ver. 1.2, are explained. Main features in this revised 3D GIS can be summarized: 2-tier system model(client-server), VGFF(Virtual GIS File Format), internal GIS import, Feature manager(zoning, layering, visualization evironment), Scene manager(manage 3D geographic world), Scene editor, Spatial analyzer(Intersect, Buffering, Network analysis), VRML exporter. While, most other 3D GISes or cartographic mapping systems may be categorized into 3D visualization systems handling terrain height-field processing, 2D GIS extension modules, or 3D geometric feature generation system using orthophoto image: actually, these are eventually considered as several parts of "real 3D GIS". As well as these things, other components, especially web-based 3D GIS, are being implemented in this study: Surface/feature integration, Java/VRML linkage, Mesh/Grid problem, LOD(Level of Detail)/Tiling, Public access security problem, 3-tier architecture extension, Surface handling strategy for VRML.

  • PDF