• 제목/요약/키워드: Remote Data

검색결과 5,185건 처리시간 0.034초

초분광 원격탐사의 특성, 처리기법 및 활용 현용 (Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications)

  • 김선화;마정림;국민정;이규성
    • 대한원격탐사학회지
    • /
    • 제21권4호
    • /
    • pp.341-369
    • /
    • 2005
  • 이 연구는 새로운 광학원격탐사자료로 대두되고 있는 초분광영상의 기본적 특성과 용어에 관한 정의를 검토하고, 지금까지 초분광영상과 관련된 주요 처리기법 및 활용분야를 광범위하게 검토하여 국내에서 초분광영상 기술의 활용을 위한 기초 자료를 제공하고자 한다. 먼저 문헌자료와 인터넷 검색을 통하여 항공기 및 위성탑재 센서와 지상용 카메라 등 현존하는 초분광센서의 종류 및 특성을 제시하였다 초분광영상과 관련된 연구 현황을 분석하기 위하여 원격탐사와 관련된 주요 국제학술지와 초분광영상 관련 학술발표회에서 발표된 논문들을 선정하여 센서별, 영상처리기법별, 주요 활용분야별로 나누어 정리하였다. 현재 항공기 및 위성 탑재 초분광영상 센서의 종류가 증가하고 있는 추세지만, 지금까지 초분광영상과 관련된 연구의 주된 부분은 미국 항공우주국에서 개발된 AVIRIS영상자료를 토대로 하고 있다. 기존의 다중분광영상에 보다 많은 분광밴드를 가진 초분광영상의 특성을 최대한 이용할 수 있는 영상처리기법이 개발되고 있다. 대기보정, 분광혼합분석, 특징추출 등이 초분광영상처리와 관련된 중요한 분야로 대두되고 있으나, 아직까지 보편적인 초분광영상 처리기술로 자리 잡기까지는 보다 많은 연구가 필요한 실정이다. 초분광영상이 가지고 있는 분광특성 정보를 최대한 이용하기에 적합한 암석 및 광물탐사가 초기의 주된 활용분야였으나, 식물의 물리화학적 정보 추출, 수질, 군용목표물 탐지 등 초분광영상의 활용은 기존의 다중분광영상의 한계를 극복하는 측면에서 확대될 전망이다.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

원격탐사와 지리정보시스템간의 접목방법에 관한 고찰 (A Discussion on the Approaches for Interfacing Remote Sensing and Geographic Information Systems)

  • 정성학;김갑덕
    • 대한원격탐사학회지
    • /
    • 제8권2호
    • /
    • pp.125-130
    • /
    • 1992
  • 원격탐사와 지리정보시스템은 많은 분야에서 접목되어 활용되고 있다. 이러한 두 공간자 료처리시스템간에 자료의 이동방법에 관하여 두 가지 기법을 고찰하였다. 원격탐사자료를 이용하 여 자연자원을 정확하게 구분하는 데에는 어려움이 따른다. 그 정확도를 높이기 위해서는 보조자 료, 즉 디지타이즈된 지도 및 지형(고도)자료 등을 원격탐사자료와 결합하여 이용한다. 이러한 자 료를 이용하는 데에는 (1) 구분 전 층화와 (2)구분 후 정리 등의 두 가지 기법이 많이 쓰인다. 이 두 기법은 유용한 반면, 결정 규칙에 의존함으로써 다소 전문성이 결여된다.

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

Characteristics of Chlorophyll a Absorption in Case 2 Water for Using Remote Sensing Data

  • Islam, Monirul;Sado, Kimiteru
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1-3
    • /
    • 2003
  • In this study, spectroradiometer data were coupled with fluorometer data to find out the best suited bands ratio to monitor the chlorophyll a concentration for inland water. Remote sensing reflectance measurements were used to evaluate the performance of several default ocean color chlorophyll algorithms for SeaWiFS data. This study shows that the chlorophyll a concentration from fluorometer and reflectance from spectroradiometer lies in exploiting the signal provided by the chlorophyll a red absorption peak near 670nm. Two-band ratio based on a ratio of reflectance 670 and 700nm provided a good correlation for a linear model, compare with blue-green two band ratio.

  • PDF

USING REMOTELY SENSED DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHAIYI PLAIN

  • Chang, Tzu-Yin;Liou, Yuei-An
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.422-425
    • /
    • 2007
  • Traditionally, surface energy fluxes are obtained by model simulations or empirical equations with auxiliary meteorological data. These methods may not effectively represent the surface heat fluxes in a regional scale due to scene variability. On the other hand, remote sensing has the advantage to acquire data of a large area in an instantaneous view. The remotely sensed data can be further used to retrieve surface radiation and heat fluxes over a large area. In this study, the airborne and satellite images in conjunction with meteorological data and ground observations were used to estimate the surface heat fluxes over Taiwan's Chaiyi Plain. The results indicate that surface heat fluxes can be properly determined from both airborne and satellite images. The correlation coefficient of surface heat fluxes with in situ corresponding observations is over 0.60. We also observe that the remotely sensed data can efficiently provide a long term monitoring of surface heat fluxes over Taiwan's Chaiyi Plain.

  • PDF

Fusion of LIDAR Data and Aerial Images for Building Reconstruction

  • Chen, Liang-Chien;Lai, Yen-Chung;Rau, Jiann-Yeou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.773-775
    • /
    • 2003
  • From the view point of data fusion, we integrate LIDAR data and digital aerial images to perform 3D building modeling in this study. The proposed scheme comprises two major parts: (1) building block extraction and (2) building model reconstruction. In the first step, height differences are analyzed to detect the above ground areas. Color analysis is then performed for the exclusion of tree areas. Potential building blocks are selected first followed by the refinement of building areas. In the second step, through edge detection and extracting the height information from LIDAR data, accurate 3D edges in object space is calculated. The accurate 3D edges are combined with the already developed SMS method for building modeling. LIDAR data acquired by Leica ALS 40 in Hsin-Chu Science-based Industrial Park of north Taiwan will be used in the test.

  • PDF

Predicting ground-based damage states from windstorms using remote-sensing imagery

  • Brown, Tanya M.;Liang, Daan;Womble, J. Arn
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.369-383
    • /
    • 2012
  • Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.