• Title/Summary/Keyword: Remote Controlled Munition System

Search Result 2, Processing Time 0.014 seconds

Design of IFF(Identification of Friend and Foe) Landmine using RFID Technology (RFID 기술을 이용한 피아식별 지뢰 설계)

  • Jang, Jong Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.414-421
    • /
    • 2013
  • In this paper, a novel IFF(Identification of Friend and Foe) landmine system has been designed and fabricated using RFID(Radio Frequency Identification) wireless communication system. The IFF landmine system is composed of RECOMS(Remote Controlled Munition System), RFID reader and RFID tag. When the friendly forces have been identified by RFID wireless communication, the IFF landmine is unloaded automatically and indicates the warning message to the operator. Through the discussion, the detailed designs and the test results of identification distance have been described and antenna revision plans for improving the performance have been mentioned.

Research on the Decrease of Dud Ammunition Rate of Grenade Fuzes of Remote Controlled Munition System(For practice) through Quality Improvement (연습용 회로지령탄약 발사통 신관 불발율 감소에 관한 연구)

  • Lee, Jong Hyeon;Jung, Hee Chur;Park, Jun Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.328-334
    • /
    • 2020
  • At the recent practice test of the Remote Controlled Munition system (for practice), nine out of 125 samples were generated. Although 7.2 % misfires occurred, the acceptance test met the defense standards. Minimizing the probability of broken fuses is essential to reducing the number of samples and improving the AQL according to the process quality. In addition, it is necessary to increase military training and ensure user safety. In the case of practical grenades, hit-type detonators are applied. Unlike the normal design, which takes a hit by strikers, a different design of a hit by pressure from a pressure generator was used. This study analyzed the detonator surface through computational fluid dynamics. The results showed that the probability of functional weakness and retraction increased with increasing slope of the detonator surface. To overcome this, design changes were made to improve the fuse crimping process and increase the detonator holder seat. A performance test with the same number of samples from the whole quantity was operated. The probability of broken fuses was 0 %. Therefore, the reliability and performance of the ammunition can be improved and is expected to contribute to the drawing and process design when developing similar ammunition.