• 제목/요약/키워드: Remediation technology

검색결과 409건 처리시간 0.022초

Adsorption/desorption of uranium on iron-bearing soil mineral surface

  • Ha, Seonjin;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • 제4권2호
    • /
    • pp.135-142
    • /
    • 2015
  • In this study, we evaluated the adsorption/desorption of uranium (U) in pure soil environment using continuous column reactor. We additionally investigated the adsorption/desorption mechanism of U on vivianite surface in molecular scale using quantum calculation. We observed that below $0.1{\mu}M$ of U was detected after 20 d from U injection ($1{\mu}M$) in adsorption test. However, all of absorbed U was detached from vivianite surface in 24 h by injection of CARB solution ($1.44{\times}10^{-2}M\;NaHCO_3$ and $2.8{\times}10^{-3}M\;Na_2CO_3$). Based on exchange energy calculation, we found that $UO_2(CO_3)_2{^{2-}}$ and $UO_2(CO_3)_3{^{4-}}$ species have higher repulsive energy than $UO_2(OH)_2$ species. The results obtained from this study could be applied to predict the behavior of uranium in contaminated and remediation sites.

Structural Evaluation and Remediation of Floor Slab Deflection

  • Park, Ki-Dong;Kim, Dae-Young;Joung, Dae-Ki
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.61-65
    • /
    • 2008
  • A 4-story reinforced concrete structure built above an underground parking garage shows some slab deflections, and the deflections of the concrete floor slabs are proposed to be alleviated by the application of light-weight topping material in conjunction with localized strengthening of the slabs. The application of light-weight concrete topping on the existing slab has been simulated and its performance to anticipated loads has been analyzed. The application of light-weight topping material imposes additional weight on the exiting floor slabs. This added weight on the existing slabs causes over-stressing of the slabs. This over-stressing can be alleviated by enhancing the load carrying capacity of the existing slabs. Additional load carrying capacity in the existing slabs can be developed by localized strengthening of the slabs utilizing techniques such as the application of fiber-reinforced composites on the bottom surface of the slabs, and application of fiber-reinforced composites adequately complements the capacity of the existing slabs to bear the additional load imposed by light-weight leveling material. Additional moments in the beam and columns induced by the application of the light-weight topping material were tabulated and compared with capacity. The moment D/C ratios of the beam and columns are well the range of acceptable limits, and the beam and columns are not overstressed by the application of the surcharge.

  • PDF

Innovative Remediation of Arsenic in Groundwater by Nano Scale Zero-Valent Iron

  • Kanel, Sushil-Raj;Kim, Ju-Yong;Park, Heechul
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.87-90
    • /
    • 2003
  • This research examines the feasibility of using laboratory-synthesized nano scale zero-valent iron particles to remove arsenic from aqueous phase. Batch experiments were performed to determine arsenic sorption rates as a function of the nano scale zero-valent iron solution concentration. Rapid adsorption of arsenic was achieved with the nano scale zero-valent iron. Typically 1 mg $L^{-1}$ arsenic (III) was adsorbed by 5 g $L^{-1}$ nano scale zero-valent iron below the 0.01 g $L^{-1}$ concentration within 7min. The kinetics of the arsenic sorption followed pseudo-first-order reaction kinetics. Observed reaction rate constants ( $K_{obs}$) varied between 11.4 to 129.0 $h^{-1}$ with respect to different concentrations of nano scale zero-valent iron. A variety of analytical techniques were used to study the reaction products including HGAAS (hydride generator atomic adsorption spectrophotometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy). Our experimental results suggest novel method for efficient removal of arsenic Iron groundwater.r.

  • PDF

이동식 토양세척설비를 이용한 오염토양 복원 사례 - 일본 키타큐슈시 불소오염토 적용을 중심으로 - (Case Study of Soil Remediation by Mobile Soil Washing Instillation - Implemetation on Fluoride comtaminated soil in kitakyushu, Japan -)

  • 오승훈;정준교;장정희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.268-276
    • /
    • 2008
  • The status of contaminated soils vary widely ; therefore, the techniques and equipment applicable to the soil concerned should be selected and used after careful consideration. Hyundai Soil Washing is physical-chemical separation based on mining and mineral processing principles for removing a broad range of organic and inorganic contaminants from soil. Mobile plant(capacity 15 tons./hr) was installed for this project. The goals of this project were 1) to verify the applicability of the washing process, which showed reliable results in the pilot plant with various kind of contaminated soils and 2) to promote recycling of the washed soil as a backfill on site. The results revealed that $F^-$ and $Pb^{2+}$ in the soil were effectively washed out to a certain level which washed soil was acceptable for recyeling.

  • PDF

Immobilization of Prussian blue nanoparticles in acrylic acid-surface functionalized poly(vinyl alcohol) sponges for cesium adsorption

  • Wi, Hyobin;Kang, Sung-Won;Hwang, Yuhoon
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.173-179
    • /
    • 2019
  • Prussian blue (PB) is known to be an effective material for radioactive cesium adsorption, but its nano-range size make it difficult to be applied for contaminated water remediation. In this study, a simple and versatile approach to immobilize PB in the supporting matrix via surface functionalization was investigated. The commercially available poly vinyl alcohol (PVA) sponge was functionalized by acrylic acid (AA) to change its major functional group from hydroxyl to carboxylic, which provides a stronger ionic bond with PB. The amount of AA added was optimized by evaluating the weight change rate and iron(III) ion adsorption test. The FTIR results revealed the surface functional group changing to a carboxyl group. The surface functionalization enhanced the attachment of PB, which minimized the leaching out of PB. The $Cs^+$ adsorption capacity significantly increased due to surface functionalization from 1.762 to 5.675 mg/g. These findings showed the excellent potential of the PB-PAA-PVA sponge as a cesium adsorbent as well as a versatile approach for various supporting materials containing the hydroxyl functional group.

Blended Instructional Practices in Higher Education Institutions

  • OH, Eunjoo
    • Educational Technology International
    • /
    • 제8권1호
    • /
    • pp.101-126
    • /
    • 2007
  • The purpose of this study was to investigate current practices in blended instruction. In particular, the study explored (1) the types of instructional delivery methods, technologies, and instructional components, (2) the reasons why faculty apply blend instruction, and (3) the advantages and challenges in delivering blended instruction. This study focused on the practices in the Universities that have the extensive doctoral research programs classified by the Carnegie Foundations. The survey was performed with the sample of faculty from 30 universities and the survey data included 133 faculties out of the total 1,000 randomly selected faculty members. Of the 133 responses, 111 (77.7%) participants had certain degree of experience, while 17 faculty (or instructors) (13.3%) did not have any practice with blended instruction. The most common instructional delivery format in the participating universities was blended instruction that added supplementary online instructional components in the class. Online Course Management Systems (CMS) and multimedia presentation tools were common technology for course delivery, and "discussion" was the most general instructional activity for the class. The participating faculty often preferred the blended format since it provides students and faculty with convenience, flexibility, active engagement, efficiency in using resource materials, and a feeling of connection between/among students and instructor. Benefits to the class were availability of more authentic experience and diverse curricular materials, and the instructional format that meets the needs of remediation and enhancement of students. This study addressed not only advantages and challenges of blended instruction, but also suggestions based on the comments by the participating faculty.

집중호우에 의한 도로시설물 피해 원인 및 대책 (Cause and Measure of Road Structures for Localized Torrential Downpour)

  • 이용수;최창호;정하익;권기환
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.458-461
    • /
    • 2007
  • 이 논문은 2006년 집중호우로 인하여 발생한 강원지역의 도로시설물 피해 원인 및 대책에 대하여 기술하였다. 최근 집중호우로 인하여 산악지형에 위치한 도로는 계곡하천의 급류와 계곡 상류지역에서 발생한 토석류 등에 의하여 유실 및 붕괴가 발생하고 있다. 피해의 주요 원인은 계곡부의 산지하천의 급류에 의한 만곡부 및 수충부의 침식과 토석류 및 부유목 등에 의한 횡단배수암거의 통수능 부족 등이다. 따라서, 산악지형의 도로시설물에 대하여 주요 원인에 대하여 도로 배수시설물의 확대 및 토석류 대책 등이 필요하다.

  • PDF

Removal of TCE using zero valent iron (ZVI) with other contaminants

  • 조현희;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.58-61
    • /
    • 2002
  • An alternative to pump and treat groundwater remediation is the use of reactive barriers. Zero valent iron (ZVI) is particularly useful as a reductant of chlorinated hydrocarbons because of its low cost and lack of toxicity ZVI can drive the dechlorination of chlorinated organic compounds and the reduction of chromium from the Cr(Ⅵ) to the Cr(III) state. The contaminants in subsurface environment usually exist as the mixed compounds. Therefore, the objective of this research is to study the effect of the other compounds on TCE removal by ZVI. The removal mechanism of TCE by ZVI is separated the dechlorination and sorption. TCE removal by ZVI slightly increased in presence of naphthalene as the non-reduced compound. TCE removal by ZVI remarkable decreased in presence of carbon tetrachloride, nitrate, and chromate as the reduced compounds. This research suggests that the effect of the coexisted compounds on the removal chlorinated compounds by reactive barrier technology should be considered for practical application.

  • PDF

인산염을 이용한 납오염 토양 고정화 반응의 가속화

  • 이의상;이상봉;이인원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.201-204
    • /
    • 2004
  • Immobilization is seen as a promising technology for lead remediation. In a laboratory experiment, immobilization of lead with soluble P was tested as a function of reaction time and P concentration. The P treated with an acidic solution to enhance heavy metal immobilization was worked into the soil, and within 7 days, lead was stabilized. Different molar ratios of soluble phosphates (super-phosphate and KH$_2$PO$_4$) would be considerably effective to accelerate the formation of highly insoluble minerals due to the lack of leachable Pb in the contaminated soil. Although it was demonstrated that the addition of soluble phosphates with an acidic solution significantly reduced available lead in soil up to over 95%, remaining phosphorus in soil matrix might cause a possible groundwater eutrophication in the near future.

  • PDF

A KINETIC ANALYSIS OF ORGANIC RELEASE FROM THE AQUIFER SOIL IN RIVERBANK/BED FILTRATION

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • 제10권4호
    • /
    • pp.199-204
    • /
    • 2005
  • Experiments were performed to estimate the organic release from the aquifer soil in riverbank and/or riverbed filtration via a kinetic approach. Organic release was assumed as a reaction of first order regarding concentrations in both soil and water phases. The reaction rate constants were obtained by comparing the model predictions with the experimental data of organic release reaction and the equilibrium distribution of organic matter between water and soil phases. Results show that the organic release from the aquifer soil was not negligible under normal conditions in Korea reaching 4.7mg-COD/L-day. This indicates that manganese and iron start to be released from aquifer soil in the riverbank filtration in the middle reach of the Nakdong river if the travel time of the filtrate exceeds about 5 days. It was also seen that the COD of the soil organic matter was 0.89mg-COD/mg-OM and that 65% of the COD was BOD5.