• Title/Summary/Keyword: Remediation system

Search Result 225, Processing Time 0.021 seconds

Remediation for Gasoline Contaminated Soils with SVE (soil vapor extraction) Including a Post-treatment System of Extraction Gases (배출가스의 후처리 공정을 포함한 토양증기추출법을 이용한 가솔린 오염 토양 복원)

  • 이민희;강현민;이병헌;빈정인
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.28-40
    • /
    • 2004
  • Box experiments were performed to evaluate the removal efficiency of SVE (soil vapor extraction) for gasoline in soil. An activated carbon sorption tower and a biofilter were operated as post-treatment processes to remove VOCs extracted from extraction wells of SVE. An acrylic resin box (65 cm${\times}$20 cm${\times}$30 cm) was used to make artificial soil layers and two injection wells and one extraction well were built for SVE process in the box. Gases from extraction wells flew into the activated carbon sorption tower or the biofilter. Gasoline concentrations of VOCs emitted from the extraction well were compared with those after post treatments. More than 92% of initial gasoline mass in soil were removed by SVE within few days, suggesting that SVE is very available to remove VOCs from contaminated soils. To treat VOCs from extraction wells of SVE, an activated carbon sorption tower and a biofilter were attached to SVE process and their gasoline removal efficiencies were measured. These post treatment systems lowered gasoline concentrations to below 1.0 ppm within few days. Average remediation efficiency was 98% of gasoline for the activated carbon sorption tower and 84.1% for the biofilter. The maximum removal capacity of a biofilter was 10.7 g/L/hr, which was ten times higher than general biofilter removal capacity. Results from the study suggest that the activated carbon sorption tower and the biofilter would be available for the post treatment process to remove VOCs generated from SVE process.

A Study of Heavy Metal-Contaminated Soil Remediation with a EDTA and Boric acid Composite(I): Pb (EDTA와 붕산 혼합용출제를 이용한 중금속으로 오염된 토양의 처리에 관한 연구(I): 납)

  • Lee Jong-Yeol;Kim Yong-Soo;Kwon Young-Ho;Kong Sung-Ho;Park Shin-Young;Lee Chang-Hwan;Sung Hae-Ryun
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • To choose a organic acid and in-organic acid composite which is the most effective in soil-flushing process cleaning lead-contaminated sites, lead removal rates were investigated in the experiments with some organic acids; 0.01M of EDTA showed the highest lead-extraction rate ($69.4\%$) compared to the other organic acids. Furthermore, the lead removal rates were measured with 0.01M of EDIA and 0.1M of in-organic acid ; a EDTA and boric acid composite showed the highest lead-extraction rate ($68.8\%$) at pH5 compared to the other composites. As the concentration of boric acid was increased from 0.1M to 0.4M in a 0.01M of EDTA and boric acid composite, lead removal rate was decreased from $68\%\;to\;45\%$. But as the concentration of EDTA was increased from 0.01M to 0.04M in a EDTA and 0.1M of boric acid composite, permeability was decreased from $6.98{\times}10^{-4}cm/sec$ (0.01M of EDTA) to $5.99{\times}10^{-4}cm/sec$ (0.04M of EDTA). However, permeability was increased from $4.41{\times}10^{-4}cm/sec$ (0.03M of EDTA) to $6.26{\times}10^{-4}cm/sec$ (0.03M of EDTA and 0.1M of boric acid composite). indicating EDTA could increase lead dissolution/extraction rate and decrease permeability. In this system, lead remediation rate is the function of lead dissolution rate from soils and permeability of the composite into soils, and the optimized [EDTA]/[Boric acid] ratio is [0.01M]/[0.1M].

Evaluation of Purification Efficiency of Passive Treatment Systems for Acid Mine Drainage and Characterization of Precipitates in Ilwal Coal Mine (일월탄광에서 유출되는 산성광산배수 자연정화시설의 정화 효율 평가 및 침전물의 특성연구)

  • Ryu, Chung Seok;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • Artificial precipitation ponds, consisting of three steps of oxidation pond, successive alkalinity producing system (SAPS) and swamp, were constructed for the treatment of the acid mine drainage from the Iwal coal mine. The efficacies of the passive treatment system in terms of neutralization of mine water and removal of dissolved ions were evaluated by the chemical analyses of the water samples. Mine water in the mine adits was acidic, showing the pH value of 2.28-2.42 but the value increased rapidly to 6.17-6.53 in the Oxidation pond. The purification efficiencies for the removal of Al and Fe were 100%, whereas those of $SO_4$, Mg, Ca, and Mn were relatively low of 50%, 40%, 24%, and 59%, respectively. These results indicate a need for application of additional remediation techniques in the passive treatment systems. The precipitates that formed at the bottom of the mine water channels were mainly schwertmannite ($Fe_8O_8(OH)_6SO_4$) and those in the leachate water were 2-line ferrihydrite ($Fe_2O_3{cdot}0.5H_2O$).

Initial Change of Environmental factors at Artificial Tidal Flat Constructed Using Ocean Dredged Sediment (해양 준설토를 이용한 인공염습지 현장시험구 조성 후 초기 환경변화)

  • Park, So-Young;Lee, In-Cheol;Yi, Byung-Ho;Lee, Ja-Yeon;Yi, Yong-Min;Sung, Ki-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • As a basic study on the creation of artificial tidal flats using dredged sediments, the pilot-scale artificial tidal flats with 4 different mixing ratio of ocean dredged sediment were constructed in Nakdong river estuary. The phragmites australis was transplanted from the adjacent phragmites australis community after construction, and then the survival and growth rate of the planted phragmites australis were measured. Also the changes of soil chemical oxygen demand (COD), ignition loss (IL), and the heterotrophic microbial numbers were monitored. The survival rate of the planted phragmites australis decreased as the mixing ratio of dredged sediment increased but there was little difference of length and diameter of the shoots. 30% of COD and 9% of IL in the tidal flat with 100% dredged sediment decreased after 202 day, however, fluctuations of COD and IL concentrations were also observed possibly due to the open system. It was suggested that the construction of tidal flats using ocean dredged sediment and biological remediation of contaminated ocean dredged sediment can be possible considering the growth rate of transplanted phragmites australis, decrease of organic matter and increased heterotrophic microbial number in the pilot plant with 100% dredged sediment. However, the continuous monitoring on the vegetation and various environmental factors in the artificial tidal flat should be necessary to evaluate the success of creation of artificial flats using dredged sediments.

  • PDF

Pb(II) Removal from Aqueous Solutions Using Pinewood and Oakwood (소나무와 참나무를 이용한 Pb(II) 제거)

  • Um, Byung-Hwan;Jo, Sung-Wook;Park, Seong-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.450-459
    • /
    • 2014
  • Crushed pinewood and oakwood were studied as an adsorbent for Pb(II) removal from aqueous solution. Batch adsorption experiments were carried out to describe the effects of contact time, initial Pb(II) concentration, pH, competing cations, and adsorbent dosage on the Pb(II) adsorption process. Kinetic studies revealed that the Pb(II) adsorption process for pinewood and oakwood followed both pseudo first and pseudo second order model. The Fruendlich model best described equilibrium adsorption data with correlation coefficients ($R^2$) of 0.956 and 0.950 for pinewood and oakwood. The maximum adsorption capacity of Pb(II) onto pinewood and oakwood was found to be 16.853 and 27.989 mg/g, respectively. The Pb(II) adsorption onto both pinewood and oakwood was increased as pH increased in the pH range 3-9. The presence of cations such as $Na^+$, $Ca^{2+}$, and $Al^{3+}$ decreased Pb(II) adsorption. The Pb(II) removal was greater in seawater than deionized water, resulting from the presence of $CO{_3}^{2-}$ and $OH^-$ ions in seawater. This study showed that pinewood and oakwood have a potential application in the remediation of Pb(II) contaminated water.

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment (해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용)

  • Kang, Ku;Kim, Young-Kee;Hong, Seong-Gu;Kim, Han-Joong;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.554-560
    • /
    • 2014
  • To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.

Case Study of Remidation and Investigation of Closed Unsanitary Landfill for Prevention of Leachate (비위생매립지 정밀조사 및 침출수 방지를 위한 정비방안 연구)

  • Kim, Sangkeun;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • For the last decade the amount of waste has rapidly been increased in South Korea and many waste landfills have been built according to government guidelines specifying required systems such as landfill liner, leachate collecting facilities, final cover system, etc. This effort has led the recently constructed landfills to be under well managed sanitary condition. In a meanwhile closed waste-landfill sites in the past before the adoption of the government guidelines exits under unsanitary condition. In these cases untreated leachate flew out to the surroundings due to the absence of liner and leachate collecting facilities and caused groundwater and soils to be contaminated. Waste generated odor and gas also brought civil complaints. Because environmental influences bring serious problems nearby sites, it is required to have unsanitary waste-landfills to be appropriately treated and managed. A study to evaluate environmental influence and contamination level of surroundings nearby and on the unsanitary landfills is necessary before the establishment of "Management guide of closed landfill site." This paper presents an environmental evaluation for the closed site, Doil-dong landfill, according to "Closed landfill management regulation" by Ministry of Environment. "D" landfill, located in Pyeongtaek city, has possobility to contaminate surrounding surfacewater and groundwater by leakage of leachate. The in-situ stabilization carried out to build the DMW(deep soil mixing cutoff wall) wall and drainage systems.

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

NATURAL ATTENUATION OF HAZARDOUS INORGANIC COMPONENTS: GEOCHEMISTRY PROSPECTIVE (유해 무기질의 자연정화 : 지화학적 고찰)

  • Lee, Suk-Young;Lee, Chae-Young;Yun, Jun-Ki
    • Proceedings of the KSEEG Conference
    • /
    • 2002.06a
    • /
    • pp.81-100
    • /
    • 2002
  • While most of regulatory communities in abroad recognize ' 'natural attenuation " to include degradation, dispersion, dilution, sorption (including precipitation and transformation), and volatilization as governing Processes, regulators prefer "degradation" because this mechanism destroys the contaminant of concern. Unfortunately, true degradation only applies to organic contaminants and short- lived radionuclides, and leaves most metals and long-lived radionuclides. The natural attenuation Processes may reduce the potential risk Posed by site contaminants in three ways: (i)contaminants could be converted to a less toxic form througy destructive processes such as biodegradation or abiotic transformations; (ii) potential exposure levels may be reduced by lowering concentrations (dilution and dispersion); and (iii) contaminant mobility and bioavailability may be reduced by sorption to geomedia. In this review, authors will focus will focul on "sorption" among the natural attenuation processes of hazardous inorganic contaminants including radionuclides. Note though that sorption and transformation processes of inorganic contaminants in the natural setting could be influenced by biotic activities but our discussion would limit only to geochemical reactions involved in the natural attenuation. All of the geochemical reactions have been studied in-depth by numerous researchers for many years to understand "retardation" process of contaminants in the geomedia. The most common approach for estimating retardation is the determination of distrubution coefficiendts ($K_{d}$) of contaminants using parametric or mechanistic models. As typocally used in fate and contaminant transport calculations such as predictive models of the natural attenuation, the $K_{d}$ is defined as the ratio of the contaminant concentration in the surrounding aqueous solution when the system is at equilibrium. Unfortunately, generic or default $K_{d}$ values can result in significant error when used to predict contaminant migration rate and to select a site remediation alternative. Thus, to input the best $K_{d}$ value in the contaminant transport model, it is essential that important geochemical processes affecting the transport should be identified and understood. Precipitation/dissolution and adsorption/desorption are considered the most important geochemical processes affecting the interaction of inorganic and radionuclide contaminants with geomedia at the near and far field, respectively. Most of contaminants to be discussed in this presentation are relatively immobile, i.e., have very high $K_{d}$ values under natural geochemical environments. Unfortunately, the obvious containment in a source area may not be good enough to qualify as monitored natural attenuation site unless owner demonstrate the efficacy if institutional controls that were put in place to protect potential receptors. In this view, natural attenuation as a remedial alternative for some of sites contaminated by hazardous-inorganic components is regulatory and public acceptance issues rather than scientific issue.

  • PDF

An Experimental Study on the Distributions of Residual Head and Discharge Rate along Collector Well Laterals of a Model Riverbed Filtration (하상여과의 집수관 모형에서 잔류수두와 유입율 분포에 관한 실험연구)

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Kyung-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1305-1310
    • /
    • 2005
  • As a way to the optimum design of the collector well lateral in riverbed filtration, experiments were performed using sand tanks which were connected to form a model lateral system. Measured were the residual hydraulic heads along the laterals, the discharge rates at each sand tank and the production rates at the collector well while the model laterals were operated with various scenarios of changing parameters including water level of the collector well, the lateral diameter and length, and the hydraulic conductivity of the sand. Results showed that riverbed filtration could be more efficient when the resistance in the lateral was weak compared with the resistance in the sand, which was indicated by the more flattened distribution of the residual hydraulic heads along the lateral. Results also showed that the discharge rate increased exponentially with the approach to the collector well, and that the exponent increased as the lateral diameter decreased and/or the hydraulic conductivity of the sand increased. It was also seen that the well production increased with the increase in the lateral length and diameter although the marginal productivity decreased. It could be concluded that the axial flow velocity in the lateral was an important factor governing the efficiency of a lateral in riverbed filtration and that the maximum entrance velocity to the collector well, over which the efficiency decreased drastically, was about 1 m/sec under the conditions of this study.