• Title/Summary/Keyword: Remanence

Search Result 110, Processing Time 0.028 seconds

Microstructure and Magnetic Properties of Nd-Fe-B Sintered Magnet with the Variation of Particle Size (분말입도에 따른 Nd-Fe-B 소결자석의 미세조직 변화 및 자기적 특성)

  • Shin, Dongwon;Kim, Dong-Hwan;Park, Young-Cheol;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • Neodymium-iron-boron (Nd-Fe-B) sintered magnets have excellent magnetic properties such as the remanence, coercive force, and the maximum energy product compared to other hard magnetic materials. The coercive force of Nd-Fe-B sintered magnets is improved by the addition of heavy rare earth elements such as dysprosium and terbium instead of neodymium. Then, the magnetocrystalline anisotropy of Nd-Fe-B sintered magnets increases. However, additional elements have increased the production cost of Nd-Fe-B sintered magnets. Hence, a study on the control of the microstructure of Nd-Fe-B magnets is being conducted. As the coercive force of magnets improves, the grain size of the $Nd_2Fe_{14}B$ grain is close to 300 nm because they are nucleation-type magnets. In this study, fine particles of Nd-Fe-B are prepared with various grinding energies in the pulverization process used for preparing sintered magnets, and the microstructure and magnetic properties of the magnets are investigated.

A Study of Development and Production Technology for Camcoder Iris Assembly (캠코더용 Iris Assembly의 국산화 및 생산 기술 개발)

  • 고종선
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 1998
  • In this paper, the principle of operation, the part characteristic, characteristic of component movement, analysis are carried out for camcoder iris assembly which is one of the important element component in Video camera large projection TV instrument. And some Know-how for development of element component is also included. The magnetic field circuit for the small and simple structure with low power consumption is introduced and new materials of yoke for small motor system is suggested. Especially, the relation with remained magnetic field and operation duration time is analyzed by experimental results. Some problems of nonlinear torque characteristics included in this system is considered to obtain the simple and low cost structure in domestic production. Furthermore, development procedure is suggested for iris assembly and some methods to reduce the burr with some check points for small precise accessories are explained.

Influence of Pd Contents and Substrate Temperature on the Magnetic Property in Co1-xPdx Films (Co1-xPdx 합금의 Pd함량과 스퍼터 기판온도에 따른 자기적 특성 변화)

  • 이기영;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.744-751
    • /
    • 2003
  • Co-Pd alloy thin films prepared by a DC-sputter that have self-organized nano structure(SONS), are promising for high-density information storage media in information era. We prepared the samples by varying Pd contents of 0~8.1 wt% at the substrate temperatures of room temperature (RT) and 200 $^{\circ}C$, respectively Microstructure and Pd contents of the Co$_{1-x}$ Pd$_{x}$ films are probed by a scanning electron microscope (SEM), a transmission electron microscope (TEM) and an energy dispersive spectrometer (EDS). We also investigated the saturation magnetization (Ms), remanence and coercivity of the Co$_{1-x}$ Pd$_{x}$ films. Surface roughness are measured by an atomic force microscope (AFM). We revealed that self-organized nano size Co-enriched phase and Pd-enriched phase existed with Pd contents at the substrate temperatures of RT and 20$0^{\circ}C$ through microstructure characterization. SONS helped to keep the saturation magnetization and enhance the perpendicular anisotropy with Pd contents. Out result implies that we may tune the perpendicular magnetic properties with keeping the saturation magnetization by varying substrate temperatures and Pd contents for high density magnetic recording.rding.

Effect of Hot-compaction Temperature on the Magnetic Properties of Anisotropic Nanocrystalline Magnets

  • Li, W.;Wang, H.J.;Lin, M.;Lai, B.;Li, D.;Pan, W.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.300-303
    • /
    • 2011
  • The effect of the hot-compaction temperature on the microstructure and magnetic properties of anisotropic nanocrystalline magnets was investigated. The hot-compaction temperature was found to impact both the magnetic properties and the microstructure of die-upset magnets. The remanence of the isotropic precursor increases slightly with the improved hot-compaction temperature, and the grains start to grow on the flake boundary at higher hot-compaction temperatures. After hot deformation, it was found that the change in the magnetic properties was the inverse of that observed with the hot-compaction temperature. Microstructural investigation showed that die-upset magnets inherit the microstructural characteristics of their precursor. For the die-upset magnets, hot pressed at low temperature, scarcely any abnormal grain growth on the flake boundary can be seen. For those hot pressed at higher temperatures, however, layers with large equiaxed grains could be observed, which accounted for the poor alignment during the hot deformation, and thus the poor magnetic properties.

Preparation of Hard Magnetic $Sm_2Fe_{17}N_x$ Compound by Mechanical Alloying (기계적 합금화법에 의한 영구자석용 $Sm_2Fe_{17}N_x$ 화합물의 제조)

  • 이충효;김명근;석명진;김지순;윤석길;권영순
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • Mechanical alloying technique was applied to prepare hard magnetic $Sm_2Fe_{17}N_x$ compound powders. Staring from pure Fe and Sm powders, the formation process of hard magnetic $Sm_2Fe_{17}N_x$ phase by mechanical alloying and subsequent solid state reaction was studied. As milled powders were found to consist of Sm-Fe amorphous and $\alpha$-Fe phases in all compositions of $Sm_xFe_{100-x}$(x = 11, 13, 15, 17). The effects of starting composition on the formation of $Sm_2Fe_{17}$ intermetallic compound was investigated by heat treatment of mechanically-alloyed powders. When Sm content was 15 at.%, heat-treated powders consisted of nearly $Sm_2Fe_{17}$ single phase. For preparation of hard magnetic $Sm_2Fe_{17}N_x$ powders, additional nitriding treatment was performed under $N_2$ gas flow at 45$0^{\circ}C$. The increase in the coercivity and remanence was proportional to the nitrogen content which increased drastically at first and then increased gradually as the nitriding time was extended to 3 hours.

  • PDF

A Study on Cu-Fe Multifilamentary Composites Produced by in situ Process (in situ법(法)에 의한 Cu-Fe계(系) 다섬유상(多纖維狀) 복합재료제조(複合材料製造)에 관한 연구(硏究))

  • Shur, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.2
    • /
    • pp.9-18
    • /
    • 1991
  • Among the many maunfactured processes of producing multi filamentary composites, in situ process is widely used owing tv its simplicity and easyness of mass production. In this study, the mechanical and electromagnetic properties of Cu-Fe composite materials was investigated. The tensile strength of the Cu-Fe wires increased as the Fe content and reduction ratio were increased. The Cu-30 wt%Fe composites had the best properties in terms of figure merits compared to the other Cu-Fe composites made in this study or the commercially manufactured 6/1 ACSR cables of Cu cable. The coercivity was decreased by increasing Fe content, but the squareness was increased greatly. As increasing reduction ratio, the coercivity and squareness increased up to the maximum points, and then decreased. For example, the maximum values were obtained at $0.09mm{\phi}$ for Cu-30 wt%Fe composites and at $0.066mm{\phi}$ for Cu-45 wt%Fe composites. The magnetic property of Cu-Fe wires produced by precipitation treatment was higher than that of Cu-Fe wires produced by thermomechanical treatment. By annealing Cu-Fe wires after drawing process, the coercivity, remanence and squareness were improved.

  • PDF

Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method

  • Ma, Jie;Chen, Bingjie;Chen, Bingkun;Zhang, Shuping
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • Superparamagnetic Zinc ferrite submicropheres are firstly synthesized via a one-pot solvothermal approach at $200-215^{\circ}C$ for 4-8 hours. $ZnCl_2$, $FeCl_3$ and NaAc are used as precursors with ethylene glycol solvent. The X-ray diffraction (XRD) data indicate that $ZnFe_2O_4$ nanoparticles with the grain size around $15{\pm}3nm$ can be successfully synthesized via the one-pot method. The scanning/transmission electronic microscope (SEM/TEM) images further show the samples are submicrospheres self-assembled by nanoparticles with size about 375-500 nm changed with reaction conditions. Room-temperature vibration magnetic strength measurements (VMS) demonstrates the as-obtained $ZnFe_2O_4$ submicrospheres show prefect superparamagnetism, whose coercivity force and remanence are practically nil. The reaction temperature and time influence on the crystallinity, diameter, saturated magnetic intensity and morphology of the particles.

Effect of Cooling-rate Dependence on the Magnitude of Thermoremanent Magnetization (냉각률이 자화에 미치는 영향)

  • Yu, Yong-Jae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.43-45
    • /
    • 2010
  • Acquisition of thermoremanent magnetization follows a Boltzman statistics, as such long reaction time in a slowly cooled environment allows more chance to align individual magnetic particles parallel to the external magnetic field. Hence it has been proposed that the slowly cooled rocks often acquire stronger magnetization than the rapidly cooled ones. Such a proposition has been experimentally validated to be true for the fine-grained magnetite- or titanomagnetite bearing basaltic rocks collected from the mid-ocean ridges. However, the effect of cooling-rate on the remanence intensity appears to be insignificant for nominal grain ranges.

  • PDF

Magnetic Properties and Microstructure of Nanocrystalline NdFeB Magnets Fabricated by a Modified Hot Working Process

  • Kim, Hyoung-Tae;Kim, Yoon-Bae;Jeon, Woo-Yong;Kim, Hak-Shin
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.138-142
    • /
    • 2002
  • Magnetic properties, microstructure and texture of NdFeB magnets fabricated by a modified hot working process from commercial melt-spun powders (Magnequench; MQPA, MQPB and MQPB+) have been investigated. The hot-pressed isotropic magnet made from MQPA powder, which contains higher Nd content than that of MQPB or MQPB+, shows higher coercivity. The magnet also shows homogenous and fine grains with higher coercivity for higher consolidation pressure. The hot-deformed MQPA magnet shows a strong anisotropy along the press direction with homogeneous platelet Nd$_2$Fe$_{14}$B grains of 50∼100nm in thickness and 200∼500nm in length. The hot-deformed MQPB+ magnet, however, shows low remanence and low coercivity. The microstructure of the magnet consists of two areas; undeformed Nd$_2$Fe$_{14}$B grains and well-aligned but large grains with 3∼4 $\mu$m in length. Low Nd content attributes to the formation of the two different area.

Structure and Magnetic Properties of Mechanically Alloyed Sm(Fe,Ti)$_7$ Compounds and Their Nitrides

  • Kim, H.T.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.57-60
    • /
    • 2001
  • Mechanically alloyed $TbCu_7 -type \;Sm_{12.5}Fe_{87.5-x}Ti_x$(x=0, 2.5, 5, 7.5),and their nitrides have been studied systematically by X-ray diffraction, A.C. initial susceptibility, and pulsed magnetization measurement. In this series, the volume expansion by nitriding is 5.6%~7.3%, and the increment of the Curie temperature is in the range of 21$0^{\circ}C$~35$0^{\circ}C$. With increasing Ti content, the remanence decreases linearly due to the substitution of non-magnetic Ti, and the coercivity decreases rapidly from 34.6 kA/cm (43.5 kOe) for $\chi$=0 to 14.3 kA/cm (18 kOe) for $\chi$=7.5. In the $Sm_{12.5}Fe_{87.5-x}Ti_xN_y$ series, the best magnetic properties were obtained from .7Ti7Ny series, the best magnetic properties were obtained from $Sm_{12.5}Fe_{87.5}N_y$($\chi$=0) with $_iH_c$=34.6 kA/cm (43.5 kOe), $B_r=0.75 \;T, \;and (BH)_{max}=113.8 kJ/m^3$(10.9 MGOe).

  • PDF