• Title/Summary/Keyword: Remaining useful life prediction

Search Result 38, Processing Time 0.029 seconds

Durability Prediction for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach (베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측)

  • Jung, Hyun-Jun;Zi, Goang-Seup;Kong, Jung-Sik;Kang, Jin-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.77-88
    • /
    • 2008
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

Framework Development for Fault Prediction in Hot Rolling Mill System (열간 압연 설비의 고장 예지를 위한 프레임워크 구축)

  • Son, J.D.;Yang, B.S.;Park, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.199-205
    • /
    • 2011
  • This paper proposes a framework to predict the mechanical fault of hot rolling mill system (HRMS). The optimum process of HRMS is usually identified by the rotating velocity of working roll. Therefore, observing the velocity of working roll is relevant to early know the HRMS condition. In this paper, we propose the framework which consists of two methods namely spectrum matrix which related to case-based fast Fourier transform(FFT) analysis, and three dimensional condition monitoring based on novel visualization. Validation of the proposed method has been conducted using vibration data acquired from HRMS by accelerometer sensors. The acquired data was also tested by developed software referred as hot rolling mill facility analysis module. The result is plausible and promising, and the developed software will be enhanced to be capable in prediction of remaining useful life of HRMS.

Neural Network based Aircraft Engine Health Management using C-MAPSS Data (C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리)

  • Yun, Yuri;Kim, Seokgoo;Cho, Seong Hee;Choi, Joo-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • PHM (Prognostics and Health Management) of aircraft engines is applied to predict the remaining useful life before failure or the lifetime limit. There are two methods to establish a predictive model for this: The physics-based method and the data-driven method. The physics-based method is more accurate and requires less data, but its application is limited because there are few models available. In this study, the data-driven method is applied, in which a multi-layer perceptron based neural network algorithms is applied for the life prediction. The neural network is trained using the data sets virtually made by the C-MAPSS code developed by NASA. After training the model, it is applied to the test data sets, in which the confidence interval of the remaining useful life is predicted and validated by the actual value. The performance of proposed method is compared with previous studies, and the favorable accuracy is found.

Durability Assesment for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach (베이지안 기법을 이용한 염해 콘크리트 구조물의 내구성 평가)

  • Jung, Hyun-Jun;Zi, Goang-Seup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.589-594
    • /
    • 2007
  • This paper is shown new method for durability assesment and design have been noticed to be very valuable has been successfully applied to predict concrete structures. This paper provides that a new approach for predicting the corrosion durability of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successive1y by the Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures under chloride attack environments.

  • PDF

A Study on Performance Reliability Analysis Device of Primary Battery (1차 전지의 성능 신뢰도 분석 장치에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • In industrial situation, electronic and electro-mechanical systems have been using different type of batteries in rapidly increasing numbers. These systems commonly require high reliability for long periods of time. Wider application of battery for low-power design as a prime power source requires us knowledge of failure mechanism and reliability of batteries in terms of load condition, environment condition and other explanatory variables. Battery life is an important factor that affects the reliability of such systems. There is need for us to understand the mechanism leading to the failure state of battery with performance characteristic and develop a method to predict the life of such battery. The purpose of this paper is to develope the methodology of monitoring the health of battery and determining the condition or fate of such systems through the performance reliability to predict the remaining useful life of primary battery with load condition, operating condition, environment change in light of battery life variation. In order to evaluate on-going performance of systems and subsystems adopting primary batteries as energy source, The primitive prototype for performance reliability analysis device was developed and related framework explained.

Machine Condition Prognostics Based on Grey Model and Survival Probability

  • Tangkuman, Stenly;Yang, Bo-Suk;Kim, Seon-Jin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.143-151
    • /
    • 2012
  • Predicting the future condition of machine and assessing the remaining useful life are the center of prognostics. This paper contributes a new prognostic method based on grey model and survival probability. The first step of the method is building a normal condition model then determining the error indicator. In the second step, the survival probability value is obtained based on the error indicator. Finally, grey model coupled with one-step-ahead forecasting technique are employed in the last step. This work has developed a modified grey model in order to improve the accuracy of prediction. For evaluating the proposed method, real trending data of low methane compressor acquired from condition monitoring routine were employed.

A study on the multiple health monitoring indicator for remaining useful life prediction of battery (리튬이온 배터리의 잔여 수명 예측을 위한 다중 건전성 모니터링 지표 연구)

  • Kwon, Sanguk;Kim, Kyutae;Yoon, Sunghyun;Lim, Cheolwoo;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.130-132
    • /
    • 2020
  • 배터리 시스템은 어플리케이션의 대영화에 따른 데이터 저장공간 문제 및 연속적인 배터리 신뢰성 문제 해결을 위한 건전성 예측 및 관리기술 접목에 관한 문제에 직면해 있으며, 이러한 문제 해결을 위해서는 배터리 시스템 신호를 통해 추출 가능한 건전성 지표 수립이 중요하다. 본 논문은 건전성 지표를 물리적, 간접적 지표로써 정의하고, 사이클 노화 데이터를 통해 건전성 지표로써의 성능을 검증하였다.

  • PDF

Prognostic Technique for Pump Cavitation Erosion (펌프 캐비테이션 침식 예측진단)

  • Lee, Do Hwan;Kang, Shin Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1021-1027
    • /
    • 2013
  • In this study, a prognostic technique for cavitation erosion that is applicable to centrifugal pumps is devised. To estimate the erosion states of pumps, damage rates are calculated based on cavitation noise measurements. The accumulated damage is predicted by using Miner's rule and the estimated damage undergone when coping with particular operating conditions. The remaining useful life (RUL) of the pump impellers is estimated according to the accumulated damage prediction and based on the assumption of future operating conditions. A Monte Carlo simulation is applied to obtain a prognostic uncertainty. The comparison of the prediction and the test results demonstrates that the developed method can be applied to predict cavitation erosion states and RUL estimates.

Durability Prediction for Concrete Structures Exposed to Carbonation Using a Bayesian Approach (베이지안 기법을 이용한 중성화에 노출된 콘크리트 구조물의 내구성 예측)

  • Jung, Hyun-Jun;Kim, Gyu-Seon;Ju, Min-Kwan;Lee, Sang-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.275-276
    • /
    • 2009
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to carbonation. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

  • PDF

Machine Learning Based State of Health Prediction Algorithm for Batteries Using Entropy Index (엔트로피 지수를 이용한 기계학습 기반의 배터리의 건강 상태 예측 알고리즘)

  • Sangjin, Kim;Hyun-Keun, Lim;Byunghoon, Chang;Sung-Min, Woo
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.531-536
    • /
    • 2022
  • In order to efficeintly manage a battery, it is important to accurately estimate and manage the SOH(State of Health) and RUL(Remaining Useful Life) of the batteries. Even if the batteries are of the same type, the characteristics such as facility capacity and voltage are different, and when the battery for the training model and the battery for prediction through the model are different, there is a limit to measuring the accuracy. In this paper, We proposed the entropy index using voltage distribution and discharge time is generalized, and four batteries are defined as a training set and a test set alternately one by one to predict the health status of batteries through linear regression analysis of machine learning. The proposed method showed a high accuracy of more than 95% using the MAPE(Mean Absolute Percentage Error).