• Title/Summary/Keyword: Rely X Unicem

Search Result 41, Processing Time 0.037 seconds

COMPARISON OF BOND STRENGTH OF A FIBER POST CEMENTED WITH VARIOUS RESIN CEMENTS (다양한 레진시멘트로 합착한 섬유포스트의 결합강도 비교)

  • Lee, Hyun-A;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.499-506
    • /
    • 2008
  • The purpose of this study was to compare the push-out strength of a fiber post cemented with various resin cements. Newly extracted 36 human mandibular premolars which had single root canal were selected and their crown portions were removed. The root canal was instrumented using $PROTAPER^{TM}$ system and obturated using continuous wave technique. In each root, a 9-mm deep post space was prepared. #2 translucent fiber post (DT Light post, Bisco Inc., Schaumburg, IL, U.S.A.) was cemented using injection technique with Uni-dose needle tip (Bisco) and six different resin cements. The tested resin cements were Duo-Link (Bisco Inc., Schaumburg, IL, U.S.A.), Variolink II (Ivoclar-Vivadent AG, Schann, Liechtenstein), Panavia F (Kuraray Medical Inc., Okayama, Japan), Multilink Automix (Ivoclar-Vivadent AG, Schann, Liechtenstein), RelyX Unicem (3M ESPE Dental Products, St. Paul, MN, U.S.A.), and Maxcem (Kerr Co., CA, U.S.A.). After storage in distilled water for 24 hours, each root was transversally sectioned into approximately 1-mm thick sections. This procedure resulted in 6 serial sections per root. Push-out test wasperformed using a universal testing machine (EZ Test, Shimadzu Co.) with a crosshead speed of 1 mm/min. The data were analyzed with one-way ANOVA and Tukey HSD (p=0.05). The push-out strength of the groups which cemented fiber post with Panavia F and Multilink Automix were lower than those of the other groups. But, there were no statistically significant difference among groups at a probability level of 0.05.

Fracture strength of zirconia ceramic crowns according to tooth position (치아 부위에 따른 지르코니아 도재관의 파절강도)

  • Lee, In-Seob;Kim, Jeong-Mi;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia ceramic crowns according to tooth position. Material and methods: After 10 metal dies were made for each group, the zirconia ceramic crowns were fabricated using CAD/CAM system ($Lava^{TM}$ All-Ceramic System) and each crown was cemented on each metal die with resin cement (Rely $X^{TM}$ Unicem). The cemented zirconia ceramic crowns mounted on the testing jig were inclined with 30 degrees to the long axis of the tooth and the universal testing machine was used to measure the fracture strength. Results: 1. The fracture strength of the zirconia ceramic crown in the lower 1st molar (2963 N) had the highest and that in the lower central incisor (1035 N) had the lowest. 2. The fracture strength of zirconia ceramic crown was higher than that of the IPS Empress crowns in all tooth position. 3. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the long axis of the crowns. 4. There were no significant differences on the fracture strength of the zirconia ceramic crowns according to tooth position except in premolar group. Conclusion: Within the limitations of this study, the results suggested that strength of zirconia ceramic crown is satisfactory for clinical use.

Physical Properties of Different Automixing Resin Cements and the Shear Bond Strength on Dentin (수종 Automixing 레진시멘트의 물성과 상아질에 대한 전단결합강도)

  • Song, Chang-Kyu;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different automixing resin cements and the shear bond strength on dentin. For this study, two self-adhesive automixing resin cement(Rely-X Unicem(3M ESPE, St. Paul, USA), Embrace resin cement(Pulpdent, Oakland, USA)) and one chemical polymerizing resin cement(Resiment Ready-Mix(J.L.Blosser Inc., Liberty Missouri, USA)) were used. To evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. The specimens were fabricated using Teflon mould according to manufacturers' instructions and stored for 24 hours in an atmosphere of 100% humidity. To evaluate the shear bond strength on dentin, each cements were adhered to buccal dentinal surface of extracted human lower molars in 2mm diameter. Physical properties and shear bond strengths were measured using universal testing machine(Z010, Zwick GmbH, Ulm, Germany) at a crosshead speed of 0.5mm/min. The physical properties and shear bond strength of different automixing resin cements were statistically analyzed and compared between groups using One-way ANOVA test and Schffe post-hoc test at the 95% level of confidence. The result shows that chemical polymerizing automixing resin cement represents the relatively higher physical properties and shear bond strength than self-adhesive automixing resin cements.

MICROLEAKAGE OF RESILON BY METHACRYLATE-BASED SEALER AND SELF-ADHESIVE RESIN CEMENT (Resilon을 이용한 근관충전 시 레진계열의 근관실러와 자가-접착 레진시멘트에 따른 미세누출)

  • Ham, Sun-Young;Kim, Jin-Woo;Shin, Hye-Jin;Cho, Kyung-Mo;Park, Se-Hee
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.204-212
    • /
    • 2008
  • The purpose of this study was to compare the apical microleakage in root canal filled with Resilon by methacrylate-based root canal sealer or 2 different self-adhesive resin cements. Seventy single-rooted extracted human teeth were sectioned at the CEJ perpendicular to the long axis of the roots with diamond disk. Canal preparation was performed with crown-down technique using Profile NiTi rotary instruments and GG drill. Each canal was prepared to ISO size 40, .04 taper and 1 mm short from the apex. The prepared roots were randomly divided into 4 experimental groups of 15 roots each and 5 roots each for positive and negative control group. The root canals were filled by lateral condensation as follows. Group 1: Gutta-percha with AH-26, Group 2: Resilon with RealSeal primer & sealer, Group 3: Resilon with Rely-X Unicem, Group 4: Resilon with BisCem. After stored in $37^{\circ}C$, 100% humidity chamber for 7 days, the roots were coated with 2 layers of nail varnish except apical 3 mm. The roots were then immersed in 1% methylene blue dye for 7 days. Apical microleakage was measured by a maximum length of linear dye penetration after roots were separated longitudinally. One way ANOVA and Scheffe's post-hoc test were performed for statistical analysis. Group 1 showed the least apical leakage and there was no statistical significance between Group 2, 3, 4. According to the results, the self adhesive resin cement is possible to use as sealer instead of primer & sealant when root canal filled by Resilon.

  • PDF

MICROLEAKAGE OF RESILON BY METHACRYLATE-BASED SEALER AND SELF-ADHESIVE RESIN CEMENT (Resilon을 이용한 근관충전 시 레진계열의 근관실러와 자가-접착 레진시멘트에 따른 미세누출)

  • Ham, Sun-Young;Kim, Jin-Woo;Shin, Hye-Jin;Cho, Kyung-Mo;Park, Se-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.204-212
    • /
    • 2008
  • The purpose of this study was to compare the apical microleakage in root canal filled with Resilon by methacrylate-based root canal sealer or 2 different self-adhesive resin cements. Seventy single-rooted extracted human teeth were sectioned at the CEJ perpendicular to the long axis of the roots with diamond disk. Canal preparation was performed with crown-down technique using Profile NiTi rotary instruments and GG drill. Each canal was prepared to ISO size 40, .04 taper and 1 mm short from the apex. The prepared roots were randomly divided into 4 experimental groups of 15 roots each and 5 roots each for positive and negative control group. The root canals were filled by lateral condensation as follows. Group 1: Guttapercha with AH-26, Group 2: Resilon with RealSeal primer & sealer, Group 3: Resilon with Rely-X Unicem, Group 4: Resilon with BisCem. After stored in $37{\circ}C$, 100% humidity chamber for 7 days, the roots were coated with 2 layers of nail varnish except apical 3 mm. The roots were then immersed in 1% methylene blue dye for 7 days. Apical microleakage was measured by a maximum length of linear dye penetration after roots were separated longitudinally. One way ANOVA and Scheffe's post-hoc test were performed for statistical analysis. Group 1 showed the least apical leakage and there was no statistical significance between Group 2, 3, 4. According to the results, the self adhesive resin cement is possible to use as sealer instead of primer & sealant when root canal filled by Resilon.

MICROTENSILE BOND STRENGTH OF SELF-ETCHING AND SELF-ADHESIVE RESIN CEMENTS TO DENTIN AND INDIRECT COMPOSITE RESIN (간접 복합레진 합착 시 자가부식형과 자가접착형 레진시멘트의 상아질에 대한 미세인장 결합강도)

  • Park, Jae-Gu;Cho, Young-Gon;Kim, Il-Sin
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.106-115
    • /
    • 2010
  • The purpose of this study was to evaluate the microtensile bond strength (${\mu}TBS$), failure modes and bonding interfaces of self-etching and three self-adhesive resin cements to dentin and indirect composite resin. Cylindrical composite blocks (Tescera, Bisco Inc.) were luted with resin cements (PA: Panavia F 2.0, Kuraray Medical Inc., RE: RelyX Unicem Clicker, 3M ESPE., MA: Maxem, Kerr Co., BI: BisCem, Bisco Inc.) on the prepared occlusal dentin surfaces of 20 extracted molars. After storage in distilled water for 24 h, $1.0\;mm\;{\times}\;1.0\;mm$ composite-dentin beams were prepared. ${\mu}TBS$ was tested at a cross-head speed of 0.5 mm/min. Data were analyzed with one-way ANOVA and Tukey's HSD test. Dentin sides of all fractured specimens and interfaces of resin cements-dentin or resin cements-composite were examined at FESEM (Field Emission-Scanning Electron Microscope). In conclusion, PA and RE showed higher bond strength and closer adaptation than MA and BI when indirect composite blocks were luted to dentin using a self-etching and three self-adhesive resin cements.

Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements

  • Lee, Jung-Jin;Choi, Jung-Yun;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. MATERIALS AND METHODS. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength (P<.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. RESULTS. Groups treated with the nano-structured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. CONCLUSION. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

Bonding values of two contemporary ceramic inlay materials to dentin following simulated aging

  • Khalil, Ashraf Abdelfattah;Abdelaziz, Khalid Mohamed
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.446-453
    • /
    • 2015
  • PURPOSE. To compare the push-out bond strength of feldspar and zirconia-based ceramic inlays bonded to dentin with different resin cements following simulated aging. MATERIALS AND METHODS. Occlusal cavities in 80 extracted molars were restored in 2 groups (n=40) with CAD/CAM feldspar (Vitablocs Trilux forte) (FP) and zirconia-based (Ceramill Zi) (ZR) ceramic inlays. The fabricated inlays were luted in 2 subgroups (n=20) with either etch-and-bond (RelyX Ultimate Clicker) (EB) or self-adhesive (RelyX Unicem Aplicap) (SA) resin cement. Ten inlays in each subgroup were subjected to 3,500 thermal cycles and 24,000 loading cycles, while the other 10 served as control. Horizontal 3 mm thick specimens were cut out of the restored teeth for push out bond strength testing. Bond strength data were statistically analyzed using 1-way ANOVA and Tukey's comparisons at ${\alpha}=.05$. The mode of ceramic-cement-dentin bond failure for each specimen was also assessed. RESULTS. No statistically significant differences were noticed between FP and ZR bond strength to dentin in all subgroups (ANOVA, P=.05113). No differences were noticed between EB and SA (Tukey's, P>.05) bonded to either type of ceramics. Both adhesive and mixed modes of bond failure were dominant for non-aged inlays. Simulated aging had no significant effect on bond strength values (Tukey's, P>.05) of all ceramic-cement combinations although the adhesive mode of bond failure became more common (60-80%) in aged inlays. CONCLUSION. The suggested cement-ceramic combinations offer comparable bonding performance to dentin substrate either before or after simulated aging that seems to have no adverse effect on the achieved bond.

Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

  • dos Santos, Victor Hugo;Griza, Sandro;de Moraes, Rafael Ratto;Faria-e-Silva, Andre Luis
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.12-16
    • /
    • 2014
  • Objectives: Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Material and Methods: Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice ($1mm^2$ diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results: Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions: Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

  • Lee, Jung-Jin;Kang, Cheol-Kyun;Oh, Ju-Won;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • PURPOSE. This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS. Sixty specimens were cut in $15{\times}2.75mm$ discs using zirconia. After air blasting of $50{\mu}m$ alumina, samples were prepared by tribochemical silica coating with $Rocatec^{TM}$ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+$Calibra^{(R)}$, (2) Monobond S+$Multilink^{(R)}$ N and (3) ESPN sil+$RelyX^{TM}$ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS. In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION. In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.