• 제목/요약/키워드: Reliability-based analysis

검색결과 4,334건 처리시간 0.038초

Reliability analysis of braced frames subjected to near field ground motions

  • Sistani, Asma;Asgarian, Behrouz;Jalaeefar, Ali
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.733-751
    • /
    • 2013
  • Near field ground motions have caused several structural damages in recent decades. As a result, seismic codes are being updated with related requirements. In this paper a comparative study on the seismic behavior of concentrically braced frames (CBFs) designed based on different seismic codes is performed. Reliability of various frames with different heights and bracing types are analyzed based on the results of "Incremental Dynamic Analysis" (IDA) under near field ground motions. Fragility curves corresponding to IO (Immediate Occupancy) and CP (Collapse Prevention) limit states are extracted based on IDA curves. Results imply that, frames designed based on the near field seismic design criteria of UBC-97 are more reliable under near field ground motions and their failure probability is less comparing to others.

항만 콘크리트 구조물의 내구성 파괴확률 예측을 위한 신뢰성 모델 (Reliability-based Model of Durability Failure for Harbor Concrete Structure)

  • 한상훈;박우선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.471-474
    • /
    • 2005
  • Reliability-based durability model was developed to consider the uncertainty of analysis variables in durability model for harbor concrete structures. The durability analysis program based on Finite Element Method (FEM) was modified adopting the reliability concept to estimate the probability of durability failure. Water-cement ratio in the durability analysis is the most important factor influencing chloride diffusion coefficient, evaporable water, etc. The probability distribution of water-cement ratio was calculated converting standard deviations of compressive strength in Concrete Standard Code to those of water-cement ratio. Based on the Monte Carlo Simulation, the probabilities of penetration depth and durability failure were calculated.

  • PDF

신뢰성 해석에 기초한 선체구조의 극한설계 (Limit State Design of Ship Structures Based on Reliability Analysis)

  • 이주성
    • 대한조선학회논문집
    • /
    • 제29권4호
    • /
    • pp.173-178
    • /
    • 1992
  • 본 논문은 최종굽힘강도에 대한 선박중앙부 구조의 신뢰성해석과 이에 기초한 설계에 대한 내용을 다루고 있다. 길이 100m 이상의 살물선과 유조선을 선박모델로 선택하였다. 선박모델들의 중앙부 구조에 대한 신뢰성해석 결과로 부터 허용신뢰성지수를 유도하였고, 이를 기초로 중앙부 구조설계를 위한 설계공식을 제안하였다. 이들을 몇척의 선박의 재설계에 적용하여 좋은 결과를 얻었으며, 이로부터 본 논문에서 제안하는 신뢰성해석에 기초한 중앙부 구조설계공식의 유용성을 확인할 수 있다.

  • PDF

New method for dependence assessment in human reliability analysis based on linguistic hesitant fuzzy information

  • Zhang, Ling;Zhu, Yu-Jie;Hou, Lin-Xiu;Liu, Hu-Chen
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3675-3684
    • /
    • 2021
  • Human reliability analysis (HRA) is a proactive approach to model and evaluate human systematic errors, and has been extensively applied in various complicated systems. Dependence assessment among human errors plays a key role in the HRA, which relies heavily on the knowledge and experience of experts in real-world cases. Moreover, there are ofthen different types of uncertainty when experts use linguistic labels to evaluate the dependencies between human failure events. In this context, this paper aims to develop a new method based on linguistic hesitant fuzzy sets and the technique for human error rate prediction (THERP) technique to manage the dependence in HRA. This method handles the linguistic assessments given by experts according to the linguistic hesitant fuzzy sets, determines the weights of influential factors by an extended best-worst method, and confirms the degree of dependence between successive actions based on the THERP method. Finally, the effectiveness and practicality of the presented linguistic hesitant fuzzy THERP method are demonstrated through an empirical healthcare dependence analysis.

Reliability-Based Topology Optimization with Uncertainties

  • Kim Chwa-Il;Wang Se-Myung;Bae Kyoung-Ryun;Moon Hee-Gon;Choi Kyung-K.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.494-504
    • /
    • 2006
  • This research proposes a reliability-based topology optimization (RBTO) using the finite element method. RBTO is a topology optimization based on probabilistic (or reliability) constraints. Young's modulus, thickness, and loading are considered as the uncertain variables and RBTO is applied to static and eigenvalue problems. The RBTO problems are formulated and a sensitivity analysis is performed. In order to compute probability constraints, two methods-RIA and PMA-are used. Several examples show the effectiveness of the proposed method by comparing the classical safety factor method.

Intra-Rater and Inter-Rater Reliability of Brain Surface Intensity Model (BSIM)-Based Cortical Thickness Analysis Using 3T MRI

  • Jeon, Ji Young;Moon, Won-Jin;Moon, Yeon-Sil;Han, Seol-Heui
    • Investigative Magnetic Resonance Imaging
    • /
    • 제19권3호
    • /
    • pp.168-177
    • /
    • 2015
  • Purpose: Brain surface intensity model (BSIM)-based cortical thickness analysis does not require complicated 3D segmentation of brain gray/white matters. Instead, this technique uses the local intensity profile to compute cortical thickness. The aim of the present study was to evaluate intra-rater and inter-rater reliability of BSIM-based cortical thickness analysis using images from elderly participants. Materials and Methods: Fifteen healthy elderly participants (ages, 55-84 years) were included in this study. High-resolution 3D T1-spoiled gradient recalled-echo (SPGR) images were obtained using 3T MRI. BSIM-based processing steps included an inhomogeneity correction, intensity normalization, skull stripping, atlas registration, extraction of intensity profiles, and calculation of cortical thickness. Processing steps were automatic, with the exception of semiautomatic skull stripping. Individual cortical thicknesses were compared to a database indicating mean cortical thickness of healthy adults, in order to produce Z-score thinning maps. Intra-class correlation coefficients (ICCs) were calculated in order to evaluate inter-rater and intra-rater reliabilities. Results: ICCs for intra-rater reliability were excellent, ranging from 0.751-0.940 in brain regions except the right occipital, left anterior cingulate, and left and right cerebellum (ICCs = 0.65-0.741). Although ICCs for inter-rater reliability were fair to excellent in most regions, poor inter-rater correlations were observed for the cingulate and occipital regions. Processing time, including manual skull stripping, was $17.07{\pm}3.43min$. Z-score maps for all participants indicated that cortical thicknesses were not significantly different from those in the comparison databases of healthy adults. Conclusion: BSIM-based cortical thickness measurements provide acceptable intra-rater and inter-rater reliability. We therefore suggest BSIM-based cortical thickness analysis as an adjunct clinical tool to detect cortical atrophy.

신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발 (Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform)

  • 김현석;김현성;박병재;이강수
    • 한국전산구조공학회논문집
    • /
    • 제34권5호
    • /
    • pp.263-270
    • /
    • 2021
  • 본 연구에서는 환경, 재료 물성 및 제작 등에서의 불확실성을 고려하여 130m급 고정식 해양구조물의 신뢰성 기반 최적설계를 수행하였다. 구조물의 구조건전성을 엄밀하게 반영하기 위해 작용 및 허용 응력의 비인 UC 값을 신뢰성 해석 및 신뢰성 기반 최적설계의 제약조건으로 고려하였다. 해양구조물의 제작비용을 저감하기 위해 자켓형 지지구조물의 중량을 최소화하였다. 불확실성의 통계적 특성은 문헌 등을 참고하여 관측되거나 측정된 데이터를 기반으로 정의하였다. 자켓형 해양구조물의 신뢰성 해석과 신뢰 기반 최적설계는 부재 수가 많아 계산 부담이 큼으로 문제의 차원을 축소하기 위해 응답의 중요성을 기준으로 설계변수를 선별할 수 있는 방법을 제안한다. 또한 효율적인 계산을 위해 신뢰성 기반 최적설계를 수행하기 전 결정론적 최적설계를 먼저 수행하였다. 마지막으로, 도출된 최적설계(안)을 기존 각 급 규정 기반 설계와 안전성 및 경제성 측면에서 비교 분석하였다.

구성요소가 서로 종속인 네트워크시스템의 신뢰성모형과 계산알고리즘 (Reliability Modeling and Computational Algorithm of Network Systems with Dependent Components)

  • 홍정식;이창훈
    • 한국경영과학회지
    • /
    • 제14권1호
    • /
    • pp.88-96
    • /
    • 1989
  • General measure in the reliability is the k-terminal reliability, which is the probability that the specified vertices are connected by the working edges. To compute the k-terminal reliability components are usually assumed to be statistically independent. In this study the modeling and analysis of the k-terminal reliability are investigated when dependency among components is considered. As the size of the network increases, the number of the joint probability parameter to represent the dependency among components is increasing exponentially. To avoid such a difficulty the structured-event-based-reliability model (SERM) is presented. This model uses the combination of the network topology (physical representation) and reliability block diagram (logical representation). This enables us to represent the dependency among components in a network form. Computational algorithms for the k-terminal reliability in SERM are based on the factoring algorithm Two features of the ractoring algorithm are the reliability preserving reduction and the privoting edge selection strategy. The pivoting edge selction strategy is modified by two different ways to tackle the replicated edges occuring in SERM. Two algorithms are presented according to each modified pivoting strategy and illustrated by numerical example.

  • PDF

시변 고장률을 이용한 배전계통 유지보수 우선순위 결정 (Deciding the Maintenance Priority of Power Distribution System using Time-varying Failure Rate)

  • 이희태;문종필;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권11호
    • /
    • pp.476-484
    • /
    • 2006
  • The failure prediction and preventive maintenance for the equipment of nuclear power plant area using reliability-centered maintenance have been grown. On the other hand, the maintenance for power distribution system consists of time-based maintenance mainly. In this paper, the new maintenance algorithms for power distribution system are developed considering reliability indices. First of all, Time-varying failure rates are extracted from data accumulated at KEPCO using exponential distribution function and weibull distribution function. Next, based on the extracted failure rate, reliability for real power distribution system is evaluated for applying the effective maintenance algorithm which is the analytic method deciding the maintenance point of time and searching the feeder affecting the specific customer. Also the algorithm deciding the maintenance priority order are presented based on sensitivity analysis and equipment investment plan are analyzed through the presented algorithm at real power distribution system.

철근콘크리트구조물의 현행 LRFD 설계식 검정 (Calibration of Current LRFD Formats for R.C. Structure Design)

  • 김상효;배규웅;박흥석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.35-40
    • /
    • 1990
  • Because of the inherent random nature of most manmade and environmental loadings and materials as well as the emperfect structural analysis, the reliability-based structural design has been recognized as a rational approach and the probability-based design criteria has been successfully developed for many standards. In order to do this it is necessary to establish target reliability levels, for which the reliability levels inherent in present design practice will be used as a rational guide. In this study the reliability levels implied in current practices, therefore, are investigated using the load and resistance models developed for domestic uses.

  • PDF