• Title/Summary/Keyword: Reliability Theory

Search Result 969, Processing Time 0.025 seconds

LOLE(Loss of Load Expctatiom) Evaluation using Fuzzy Set Theory (퍼지 집합 이론을 이용한 공급지장 기대치의 산정)

  • 심재홍;정현수;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1055-1063
    • /
    • 1999
  • This paper present a conceptual possibilistic approach using fuzzy set theory to manage the uncertainties in the given reliability input date of the practical power system. In this paper, an algorithm is introduced to calculate the possibilstic reliability indices according to the degree of uncertainty in the given data. The probability distribution function can be transformed into an appropriate possibilstic representation using the probability-Possibility Consistency principle(PPCP) algorithm. In this the algorithm, the transformation is performation by making a compromise between the transformation consistency and the human updating experience. Fuzzy classifcation theory is applied to reduced the number of load data. The fuzzy classification method determines the closeness of load data points by assigning them to various clusters and then determening the distance between the clusters. The IEEE-RTS with 32-generating units is used to demonstrate the capability of the proposed algorithm.

  • PDF

Development of Integrity Assessment Model for Reinforced Concrete Highway Bridges Using Fuzzy Concept (Fuzzy 개념을 이용한 RC도로교의 건전성평가 모델 개발)

  • Na, Ki-Hyun;Park, Ju-Won;Lee, Cheung-Bin;Jung, Chul-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.151-161
    • /
    • 1998
  • In this study, an attempt is made to apply the concept of fuzzy-bayesian theory to the integrity assessment of RC highway bridge, and uncertainty states are represented in terms of fuzzy sets which define several linguistic variables such as "very good", "good", "average", "poor", "very poor", etc. Especially, the concept of fuzzy conditional probability aids to derive a new reliability analysis which includes the subjective assessment of engineers without introducing any additional correction factors. The fuzzy concept are also used as reliability indexes for the condition assessment based on the proposed models, the proposed fuzzy theory-based approach with the results of visual inspection and extensive field load tests are applied to the integrity assessment of a new RC highway bridge, namely, Jichok bridge.

  • PDF

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.

A Study on The Feliability Predication Model of Gyroscope (자이로의 신뢰성 예측모델에 관한 연구)

  • 백순흠;문홍기;김호룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.475-481
    • /
    • 1993
  • The objective of this study is to develope the reliability prediction model for Float Rated Integrating Gyroscope( :FRIG) at maximum loading. The equation of motion for FRIG is firstly derived to set up the reliability prediction model. To analysis reliability or all parts of the gyro is not easy due to their complicated structure. Therefore the failure parts are chosen by Failure Mode Effective Analysis (:FMEA). F.E.M is utilized to calculate loads for the selseced rotating assembly and pivot / jewel. The technical reliability is calculated by applying reliability design theory with these results and the performance reliability is sought through distribution estimation with error test data. The bulk reliability of gyroscope is sought by applying the two results. The present prediction results are compared with the accumulation time in good agreement.

  • PDF

L.E.O. Satellite Power Subsystem Reliability Analysis

  • Zahran M.;Tawfik S.;Dyakov Gennady
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.104-113
    • /
    • 2006
  • Satellites have provided the impetus for the orderly development of reliability engineering research and analysis because they tend to have complex systems and hence acute problems. They were instrumental in developing mathematical models for reliability, as well as design techniques to permit quantitative specification, prediction and measurement of reliability. Reliability engineering is based on implementing measures which insure an item will perform its mission successfully. The discipline of reliability engineering consists of two fundamental aspects; $(1^{st})$ paying attention to details, and $(2^{nd})$ handling uncertainties. This paper uses some of the basic concepts, formulas and examples of reliability theory in application. This paper emphasizes the practical reliability analysis of a Low Earth Orbit (LEO) Micro-satellite power subsystem. Approaches for specifying and allocating the reliability of each element of the power system so as to meet the overall power system reliability requirements, as well as to give detailed modeling and predicting of equipment/system reliability are introduced. The results are handled and analyzed to form the final reliability results for the satellite power system. The results show that the Electric Power Subsystem (EPS) reliability meets the requirements with quad microcontrollers (MC), two boards working as main and cold redundant while each board contains two MCs in a hot redundant.

Exploring the Reliability of an Assessment based on Automatic Item Generation Using the Multivariate Generalizability Theory (다변량일반화가능도 이론을 적용한 자동문항생성 기반 평가에서의 신뢰도 탐색)

  • Jinmin Chung;Sungyeun Kim
    • Journal of Science Education
    • /
    • v.47 no.2
    • /
    • pp.211-224
    • /
    • 2023
  • The purpose of this study is to suggest how to investigate the reliability of the assessment, which consists of items generated by automatic item generation using empirical example data. To achieve this, we analyzed the illustrative assessment data by applying the multivariate generalizability theory, which can reflect the design of responding to different items for each student and multiple error sources in the assessment score. The result of the G-study showed that, in most designs, the student effect corresponding to the true score of the classical test theory was relatively large after residual effects. In addition, in the design where the content domain was fixed, the ranking of students did not change depending on the item types or items. Similarly, in the design where the item format was fixed, the difficulty showed little variation depending on the content domains. The result of the D-study indicated that the original assessment data achieved a sufficient level of reliability. It was also found that higher reliability than the original assessment data could be obtained by reducing the number of items in the content domains of operation, geometry, and probability and statistics, or by assigning higher weights to the domains of letters and formulas, and function. The efficient measurement conditions presented in this study are limited to the illustrative assessment data. However, the method applied in this study can be utilized to determine the reliability and to find efficient measurement conditions for the various assessment situations using automatic item generation based on measurement traits.

Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load (지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석)

  • 오병환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.233-240
    • /
    • 2000
  • Nuclear power plant structures may be exposed to aggressive environmental effects than may cause their strength and stiffness to decrease over their service lives, Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances such evaluations are generally very difficult and remain novel. The assessment of existing RC containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration using time-dependent structural reliability analysis to take earthquake loading uncertainties into account. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory the reliability analysis which can determine the failure probabilities has been established.

  • PDF

Evaluation of Highway Traffic Safety using Reliability Theory (신뢰도를 활용한 도로시설 교통안전성 평가기법)

  • Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.77-82
    • /
    • 2016
  • PURPOSES : This paper proposes a reliability index for the safety evaluation of freeway sections. It establishes a reliability index as a safety surrogate on freeways considering speeds and speed dispersions. METHODS : We collated values of design elements including radii, curve lengths, vertical slopes (absolute values), superelevations, and vertical slopes from seven freeway sections in Korea. We also collected data about driving speeds, traffic accidents, and their deviations. We established a reliability index using these variables. RESULTS : The average radii, curve lengths, and superelevations are highly correlated with the incidence of traffic accidents. Deviations in radius and curve lengths show an especially high correlation. The reliability index, derived from speed and speed dispersions of the seven freeway sections, also correlated highly with accidents with a correlation index of 0.63. CONCLUSIONS : Since the reliability index obtained from speed and speed dispersions are highly correlated with traffic accidents, we conclude that a reliability index can be a safety surrogate on freeways considering speeds and speed dispersions together in terms of design and operational levels.

Reliability Evaluation of Multi-Stage Gear Drive (다단 기어장치의 신뢰성 평가에 관한 연구)

  • Chong Tae-Hyong;Kim Young-Ju;Park Seung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • Recently the design of multi-stage gear drive is being highly concerned. Until now, since the researches of gear drive are focused on the design for satisfying safety factor, the reliability evaluation of multi-stage gear drive is not included. In this paper, the life and reliability models of multi-stage gear drive are proposed using methods of probability and statistics. The life and reliability of the multi-stage gear drive have been evaluated, which is based on the life and reliability of each stage gear drive. The pinion and gear lives of each stage are calculated using the Lundberg-Palmgren theory and the Weibull failure distribution. These lives are combined using methods of probability and statistics to produce a life and reliability model of multi-stage gear drive.

Investigation of Various Reliability Indices of Pre-service Mathematics Teachers' Teaching Aptitude and Personality Test based on Setting Cut Scores (예비수학교사의 교직 적성·인성 검사에서 분할점수 변화에 따른 다양한 신뢰도 탐색)

  • Kim, Sungyeun
    • The Mathematical Education
    • /
    • v.57 no.1
    • /
    • pp.55-74
    • /
    • 2018
  • The purpose of this study is first to examine the relative influence of each error source and to investigate the optimal measurement conditions to ensure satisfactory multiple reliability coefficients based on the teaching aptitude and personality test for pre-service teachers. Participants were 33 students enrolled in mathematics education in a graduate school of education located in the Seoul metropolitan area from 2013 to 2017. The main results were as follows. First, the estimated variance due to residual was highest, followed by nesting of items within domains, graduate students, interactions of graduate students with domains, and domains. Second, total 96 items, with 12 domains containing 8 items in each domain, with cut score of 598, and original 210 items, with 14 domains containing 15 items in each domain, with cut scores of 615 or 716 were optimal measurement conditions to reach acceptable reliability levels based on the joint consideration of dependability coefficients, cut score dependability coefficients, adjusted dependability coefficients, and standard errors of measurement. Third, larger deviations between the arithmetic mean and the cut score indicated higher reliability coefficients of the test results. Finally, this study suggests ways for practitioners to consider how to apply generalizability theory for criterion-referenced tests and how to develop future research based on limitations.