• Title/Summary/Keyword: Reliability Prediction Model

Search Result 533, Processing Time 0.029 seconds

Life Analysis and Reliability Prediction of Micro-Switches based on Life Prediction Method (수명예측 방법에 따른 마이크로스위치의 수명분석 및 신뢰도 예측)

  • Ji, Jung-Geon;Shin, Kun-Young;Lee, Duk-Gyu;Lee, Hi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-69
    • /
    • 2011
  • Reliability means that a product maintains its initial quality and performance at certain period of time(time, distance, cycle etc) under given condition without failure. Given conditions include both environmental condition and operating condition. Environmental condition means common natural environment such as temperature, humidity, vibration, and working condition means artificial environment such as voltage, current load, install place, hours of use, which occurs during using the product. In the field of railway vehicles, although components of railway vehicles with reliability are the trend of mandatory as persisting period of railway vehicles is extended, using components of railway vehicles is insufficient for the practical reliability assessment. but the meaning of the first railway operating agency to acquire the parts in the field, the data suggest the reliability of products if you can and can show the reliability of modular units and modular units can provide the reliability of if you can present reliability of the entire system is thought to be here In this study, lifespan of micro-switch for master controller is analyzed and prediction is performed based on its field data considering the special circumstances of railway vehicles operating agency, such as a large number of trains operates on the same line.

Overview of the 217PlusTM, Electronic System Reliability Prediction Methodology (전기전자 시스템 신뢰성 예측 방법론 217PlusTM의 개요)

  • Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.215-226
    • /
    • 2008
  • MIL-HDBK-217 has widely been used for electronics reliability predictions. Recently, the $217Plus^{TM}$ has been developed by DoD RIAC and may replace MIL-HDBK-217. A overview of the $217Plus^{TM}$ has been performed in this paper. We first reviewed the overall concepts and reliability prediction procedures. We then explained the component models and the system level model with process grading concepts. Bayesian approach incorporating field data into the predicted failure rate is another feature of this methodology.

  • PDF

Neural Network for Softwar Reliability Prediction ith Unnormalized Data (비정규화 데이터를 이용한 신경망 소프트웨어 신뢰성 예측)

  • Lee, Sang-Un
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1419-1425
    • /
    • 2000
  • When we predict of software reliability, we can't know the testing stopping time and how many faults be residues in software the (the maximum value of data) during these software testing process, therefore we assume the maximum value and the training result can be inaccuracy. In this paper, we present neural network approach for software reliability prediction with unnormalized (actual or original collected) data. This approach is not consider the maximum value of data and possible use the network without normalizing but the predictive accuracy is better. Also, the unnormalized method shows better predictive accuracy than the normalized method given by maximum value. Therefore, we can make the best use of this model in software reliability prediction using unnormalized data.

  • PDF

Effects of System Reliability Improvements on Future Risks

  • Yang, Heejoong
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.10-19
    • /
    • 1996
  • In order to build a model to predict accidents in a complicated man-machine sytem, human errors and mechanical reliability can be viewed as the most important factors. Such factors are explicitly included in a generic model. Another point to keep in mind is that the model should be constructed so that the data in a type of accident can be utilized to predict other types of accidents. Based on such a generic prediction model, we analyze the effects of system reliability. When we improve the system reliability, in other words, when there are changes in model parameters, the predicted time to next accidents should be modified influencing the effects of system reliability improvements. We apply Bayesian approach and finds the formula to explain how a change on the machine reliability or human error probability influences the time to next accident.

  • PDF

Parameter Estimation and Prediction for NHPP Software Reliability Model and Time Series Regression in Software Failure Data

  • Song, Kwang-Yoon;Chang, In-Hong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • We consider the mean value function for NHPP software reliability model and time series regression model in software failure data. We estimate parameters for the proposed models from two data sets. The values of SSE and MSE is presented from two data sets. We compare the predicted number of faults with the actual two data sets using the mean value function and regression curve.

A Reliability Model of Electronic Ballasts using SR-332 (SR-332에 의한 전자식 안정기의 신뢰성 모형)

  • Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.37-46
    • /
    • 2009
  • As the level of technology and the standard of living improve, product reliability plays an increasingly significant role. This study has been performed to build a reliability model of electronic ballasts for the low wattage fluorescent lamp. Telcordia SR-332, one of the most widely used reliability specifications, was selected for the model development. We briefly reviewed the basic concepts of the electronic ballast. We then developed a reliability model for the ballast using SR-332 concepts and the reliability has been examined. We further discussed the significance of the first-year failure effect on the mean life.

  • PDF

Reliability Models for Application Software in Maintenance Phase

  • Chen, Yung-Chung;Tsai, Shih-Ying;Chen, Peter
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • With growing demand for zero defects, predicting reliability of software systems is gaining importance. Software reliability models are used to estimate the reliability or the number of latent defects in a software product. Most reliability models to estimate the reliability of software in the literature are based on the development lifecycle stages. However, in the maintenance phase, the software needs to be corrected for errors and to be enhanced for the requests from users. These decrease the reliability of software. Software Reliability Growth Models (SRGMs) have been applied successfully to model software reliability in development phase. The software reliability in maintenance phase exhibits many types of systematic or irregular behaviors. These may include cyclic behavior as well as long-term evolutionary trends. The cyclic behavior may involve multiple periodicities and may be asymmetric in nature. In this paper, SGRM has been adapted to develop a reliability prediction model for the software in maintenance phase. The model is established using maintenance data from a commercial shop floor control system. The model is accepted to be used for resource planning and assuring the quality of the maintenance work to the user.

Failure Time Prediction Capability Comparative Analysis of Software NHPP Reliability Model (소프트웨어 NHPP 신뢰성모형에 대한 고장시간 예측능력 비교분석 연구)

  • Kim, Hee-Cheul;Kim, Kyung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.143-149
    • /
    • 2015
  • This study aims to analyze the predict capability of some of the popular software NHPP reliability models(Goel-Okumo model, delayed S-shaped reliability model and Rayleigh distribution model). The predict capability analysis will be on two key factors, one pertaining to the degree of fitment on available failure data and the other for its prediction capability. Estimation of parameters for each model was used maximum likelihood estimation using first 80% of the failure data. Comparison of predict capability of models selected by validating against the last 20% of the available failure data. Through this study, findings can be used as priori information for the administrator to analyze the failure of software.

Sensitivity Analysis of the 217PlusTM Component Models for Reliability Prediction of Electronic Systems (전자 시스템 신뢰도 예측을 위한 217PlusTM 부품모형의 민감도 분석)

  • Jeon, Tae-Bo
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.4
    • /
    • pp.507-515
    • /
    • 2011
  • MIL-HDBK-217 has played a pivotal role in reliability prediction of electronic equipments for more than 30 years. Recently, RIAC developed a new methodology $217Plus^{TM}$which officially replaces MIL-HDBK-217. Sensitivity analysis of the 217Plus component models to various parameters has been performed and meaningful observations have been drawn in this study. We first briefly reviewed the $217Plus^{TM}$ methodolog and compared it with the conventional model, MIL-HDBK-217. We then performed sensitivity analysis $217Plus^{TM}$ component models to various parameters. Based on the six parameters and an orthogonal array selected, we have performed indepth analyses concerning parameter effects on the model. Our result indicates that, among various parameters, operating temperature and temperature rise during operation have the most significant impacts on the life of a component, and thus a design robust to high temperature is the most importantly required. Next, year of manufacture, duty cycle, and voltage stress are weaker but may be significant when they are in heavy load conditions. Although our study is restricted to a specific type of diodes, the results are still valid to other cases. The results in this study not only figure out the behavior of the predicted failure rate as a function of parameters but provide meaningful guidelines for practical applications.

A Method for Selecting Software Reliability Growth Models Using Trend and Failure Prediction Ability (트렌드와 고장 예측 능력을 반영한 소프트웨어 신뢰도 성장 모델 선택 방법)

  • Park, YongJun;Min, Bup-Ki;Kim, Hyeon Soo
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1551-1560
    • /
    • 2015
  • Software Reliability Growth Models (SRGMs) are used to quantitatively evaluate software reliability and to determine the software release date or additional testing efforts using software failure data. Because a single SRGM is not universally applicable to all kinds of software, the selection of an optimal SRGM suitable to a specific case has been an important issue. The existing methods for SRGM selection assess the goodness-of-fit of the SRGM in terms of the collected failure data but do not consider the accuracy of future failure predictions. In this paper, we propose a method for selecting SRGMs using the trend of failure data and failure prediction ability. To justify our approach, we identify problems associated with the existing SRGM selection methods through experiments and show that our method for selecting SRGMs is superior to the existing methods with respect to the accuracy of future failure prediction.