• Title/Summary/Keyword: Reliability Prediction Equation

Search Result 99, Processing Time 0.031 seconds

Study of Prediction of Reliability of Barrel in Small Arms by Dispersion Anlaysis (분산도 분석기법을 통한 총열 신뢰성 예측에 관한 연구)

  • Kim, Hyun Jun;Chae, Je Wook;Choe, Eui Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.227-232
    • /
    • 2013
  • This study proposes a method for predicting the reliability of the barrel in small arms by analyzing the dispersion. The periodicity with which the barrel needs to be changed can be determined by detecting the inner surface directly or by inspecting scratches inside the barrel using an optical sensor. However, soldiers and directors in the logistics command need a more easy way to check the periodicity of barrel. Therefore, this study focuses on the relation between the firing round and the dispersion. A simple equation can be experimentally derived from pre-tests and analyses. This equation is confirmed through firing tests. In this sense, it can be easily applied to determine the periodicity with which the barrel of small arms needs to be changed in the field army.

A Study on the Attribute Analysis of Software Reliability Model with Shape Parameter Change of Infinite Fault NHPP Lomax Life Distribution (무한고장 NHPP Lomax 수명분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung-il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.20-26
    • /
    • 2019
  • In this study, the optimal shape parameter condition is presented after analyzing the attributes of the software reliability model according to the change of the shape parameter of Loma life distribution with infinite fault NHPP. In order to analyze the software failure phenomena, the parametric estimation method was applied to the Maximum Likelihood Estimation method, and the nonlinear equation was applied to the bisection method. As a result, it was found that when the attributes according to the change of the shape parameter are compared, the smaller the shape parameter is, the better the prediction ability of the true value, and reliability attributes are efficient. Through this study, it is expected that software developers can increase reliability by preliminarily grasping the type of software failure based on shape parameter, and can be used as basic information to improve the software reliability attributes.

The Practice of Bending Deflection using Non-destructive MOE of Glulam (비파괴 탄성계수를 이용한 집성재의 휨변형 예측)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In the glulam beam deflection it is necessary to check the reliability of theory formula, because of wood anisotropy and wood qualities (knot, slop of grain). In this experiment, when bending stress occurred on glulam, practice deflection of glulam measuring with AICON DPA-Pro 3D system were compared with prediction deflection calculated as substituting MOE through non-destructive testing and static MOE through bending test in differential equation of deflection curve. MOE using ultrasonic wave tester of laminae, MOE using natural frequencies of longitudinal vibrations ($E_{cu}$, $E_{cf}$), MOE using ultrasonic wave tester of glulam ($E_{gu}$) and MOE using natural frequencies of longitudinal vibrations ($E_{gf}$) were substituted in this experiment. When practice deflection measured by 3D system was compared with prediction deflection calculated with differential equation of deflection curve, within proportional limit the ratio of practice deflection and prediction deflection was similar as 1.12 and 1.14, respectively. Deflection using ultrasonic wave tester was 0.89 and 0.95, Deflection using natural frequencies of longitudinal vibrations was 1.07 and 1.10. The results showed that prediction deflection calculated by substituting using non-destructive MOE of glulam having anisotropy in differential equation of deflection curve was agreed well with practice deflection.

Effective Compressive Strength of Corner Columns with Intervening Normal Strength Slabs (일반강도 슬래브로 간섭받은 모서리 기둥의 유효압축강도)

  • Lee, Joo-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.122-129
    • /
    • 2015
  • In this study, a prediction model for the effective compressive strength of corner columns with intervening normal strength concrete slabs was developed. A structural analogy between high-strength concrete column-normal strength concrete slab joint and brick masonry was used to develop the prediction model. In addition, the aspect ratio of slab thickness to column dimension was considered in the models. The reliability of the new prediction model was evaluated by comparison with experimental results and its superiority was demonstrated by comparison with previous models proposed by design codes and other researchers. As a result, with average test-to-predicted ratios of 1.09, a standard deviation of 0.15, the newly developed equation provided superior predictions in terms of accuracy and consistency over all of the existing effective strength prediction approaches including KCI structural concrete design code (2012).

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.

Fatigue Life Prediction for Automotive Vibroisolating Rubber Component Using Tearing Energy (찢김에너지를 이용한 자동차용 방진 부품의 내구수명 예측)

  • Moon, Hyung-Il;Kim, Ho;Woo, Chang-Soo;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.100-106
    • /
    • 2012
  • Recently, the demand to acquire and improve durability performance has steadily risen in rubber components design. In design process of a rubber component, an analytical prediction is the most effective way to improve fatigue life. Existing methods of analytical estimation have mainly used an equation for fatigue life obtained from fatigue test data. However, such formula is rarely used due to costs and time required for fatigue testing, as well as randomness of rubber materials. In this paper, we describe fatigue life estimation of rubber component using only the results from a relatively simple tearing test. We estimated fatigue life of the Janggu type fatigue specimen and the automotive motor mount, and evaluated reliability of the proposed method by comparing the estimated values with actual test results.

A Study on the Reliability Prediction and Lifetime of the Electrolytic Condenser for EMU Inverter (전동차 인버터 구동용 전해콘덴서의 신뢰도예측과 수명 연구)

  • Han, Jae-Hyun;Bae, Chang-Han;Koo, Jeong-Seo
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Inverter module, which feeds the converted power to the traction motor for EMU. Consists of the power semiconductors with their gate drive unit(GDU)s and the control computer for driving, voltage, current and speed controls. Electrolytic condenser, connected to the gate drive unit and a core component to drive the power semiconductor, has problems such as reduction in lifetime and malfunction caused by electrical and mechanical characteristic changes from heat generation during high speed switching for generation of stable power. In this study, To check the service life of electrolytic condenser, the test was carried out in two ways. First, In the case of accelerated life testing of condenser, the Arrhenius model is a way of life testing. Another way is to analyze the reliability of the failure data by the method of parametric data analysis. Eventually, life time by accelerated life test than a method of failure data analysis(Weibull distribution) was found to be slightly larger output.

Prediction of the Fatigue Life of Deep Groove Ball Bearing Under Radial and Moment Loads - Fatigue Life Tests and Proposal of the Life Adjustment Factors (반경방향과 모멘트하중 하에서의 깊은홈 베어링의 피로수명평가 - 수명시험 및 수명보정계수 제안)

  • 김완두;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3149-3158
    • /
    • 1994
  • In this paper, using the formulation of dynamic equivalent load considering the effects of moment load and the equation to estimate the cage rotational speed, the new life equation of deep groove ball bearing under radial and moment loads was proposed. Fatigue life test apparatus with the measuring equipment of shaft and cage speed was designed and developed to be capable of subjecting combined radial and moment load. Fatigue life tests were executed by sudden death test method and the reliability of fatigue lives was evaluated by Weibull distribution analysis. From the results of fatigue tests and analysis, the relationships between film parameters and life adjustment factors were acquired. And it was turned out that so as to estimate the effect of moment load on fatigue life, the life adjustment factor as well as the dynamic equivalent load must be taken into account.

Assessment of Historical Earthquake Magnitudes and Epicenters Using Ground Motion Simulations (지진동 모사를 통한 역사지진 규모와 진앙 평가)

  • Kim, Seongryong;Lee, Sang-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2021
  • Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs' input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequency-wavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.

Analysis of relationship between SS, COD, and T-P in rural area (농촌유역에서의 SS, COD 및 T-P간의 상관관계 분석(지역환경 \circled1))

  • 함종화;윤춘경
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.525-530
    • /
    • 2000
  • The loss of soil and nutrients from land surfaces to surface water supplies continues to be an important source of nonpoint source pollution. This study was initiate to develop an empirical relationship among the contaminants. SS, COD, T-N, and T-P were collected from agricultural surface water quality studies carried out in Hwasung-Gun, Kyonggi-Do. Correlation analysis, regression analysis, and reliability analysis were conducted. The regression equations were developed between SS and COD, SS and T-P, COD and T-P, and the resulting r$\^$2/ value was over 0.78. The regression equation enables a reasonable prediction of phosphorus concentration and COD concentration for known suspended solid concentration.

  • PDF