• 제목/요약/키워드: Reliability Design

검색결과 5,508건 처리시간 0.028초

ROBUST RELIABILITY DESIGN OF VEHICLE COMPONENTS WITH ARBITRARY DISTRIBUTION PARAMETERS

  • Zhang, Y.;He, X.;Liu, Q.;Wen, B.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.859-866
    • /
    • 2006
  • This study employed the perturbation method, the Edgeworth series, the reliability optimization, the reliability sensitivity technique and the robust design to present a practical and effective approach for the robust reliability design of vehicle components with arbitrary distribution parameters on the condition of known first four moments of original random variables. The theoretical formulae of the robust reliability design for vehicle components with arbitrary distribution parameters are obtained. The reliability sensitivity is added to the reliability optimization design model and the robust reliability design is described as a multi-objection optimization. On the condition of known first four moments of original random variables, the respective program can be used to obtain the robust reliability design parameters of vehicle components with arbitrary distribution parameters accurately and quickly.

신뢰성 기반 강건 최적화를 이용한 자동채염기의 확률론적 구조설계 (Probabilistic Structure Design of Automatic Salt Collector Using Reliability Based Robust Optimization)

  • 송창용
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.799-807
    • /
    • 2020
  • This paper deals with identification of probabilistic design using reliability based robust optimization in structure design of automatic salt collector. The thickness sizing variables of main structure member in the automatic salt collector were considered the random design variables including the uncertainty of corrosion that would be an inevitable hazardousness in the saltern work environment. The probabilistic constraint functions were selected from the strength performances of the automatic salt collector. The reliability based robust optimum design problem was formulated such that the random design variables were determined by minimizing the weight of the automatic salt collector subject to the probabilistic strength performance constraints evaluating from reliability analysis. Mean value reliability method and adaptive importance sampling method were applied to the reliability evaluation in the reliability based robust optimization. The three sigma level quality was considered robustness in side constraints. The probabilistic optimum design results according to the reliability analysis methods were compared to deterministic optimum design results. The reliability based robust optimization using the mean value reliability method showed the most rational results for the probabilistic optimum structure design of the automatic salt collector.

리던던시 기법을 활용한 신뢰성 설계 대안 분석 (Alternative Analysis of Reliability Design using Redundancy Technique)

  • 서양우;임재훈;윤정환;남현우;우연정
    • 시스템엔지니어링학술지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2021
  • In this paper we proposed the alternative analysis of reliability design using redundancy technique. First, we presented the process for establishing the reliability design alternative analysis process considering the active redundancy and the standby redundancy. and then, the case analysis of A driving equipment was performed in accordance with the reliability design alternative analysis process presented. In case the series reliability design result is not met with the reliability target value. so, the target item for redundancy design of A driving equipment were selected as items with a severity of two or higher. The redundancy design applied with active and standby redundancy techniques were analyzed using BlockSim software. As a result, it was analyzed that reliability design to active redundancy with one of two elements required for A driving equipment is the most efficient compared to the target value of reliability. The results of this study can be usefully used before the reliability design is performed.

Design of reliability critical system using axiomatic design with FMECA

  • Goo, Bongeun;Lee, Joohee;Seo, Suwon;Chang, Daejun;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.11-21
    • /
    • 2019
  • In product design, the initial design stage is being increasingly emphasized because it significantly influences the successive product development and production stages. However, for larger and more complex products, it is very difficult to accurately predict product reliability in the initial design stage. Various design methodologies have been proposed to resolve this issue, but maintaining reliability while exploring design alternatives is yet to be achieved. Therefore, this paper proposes a methodology for conceptual design considering reliability issues that may arise in the successive detailed design stages. The methodology integrates the independency of axiomatic design and the hierarchical structure of failure mode, effects, and criticality analysis (FMECA), which is a technique widely used to analyze product reliability. We applied the proposed methodology to a liquefied natural gas fuel gas supply system to verify its effectiveness in the reliability improvement of the design process.

연속형 시스템의 신뢰성 성장 관리 시험 설계 방안 (A Method of Reliability Growth Management Test Design for Continuous System)

  • 서양우;윤정환;이승상;엄천섭
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.87-96
    • /
    • 2020
  • In this paper we proposed the test design method of reliability growth management. First, we presented the process for establishing the reliability growth management test design considering the number of failures and the termination test time. Reliability growth analysis of continuous system was performed in accordance with the test design process presented. In case the reliability test result is not met with the reliability target value after more than three failures occurred, the required test times were analyzed that 1,725 hrs for one corrective action, 1,950 hrs for two corrective actions. If the number of failures is less than three, design a reliability demonstration test according to confidence level 80% and 90% was performed using RGA 11 Software. As a result, it is possible to establish the reliability growth management test design with sufficient use of available resources. The results of this study can be used when establishing a test design for assessment of reliability growth management of all continuous systems.

장애함수법에 의한 신뢰성기반 최적설계 (Barrier Function Method in Reliability Based Design Optimization)

  • 이태희;최운용;김홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

RELIABILITY-BASED DESIGN OPTIMIZATION OF AUTOMOTIVE SUSPENSION SYSTEMS

  • Chun, H.H.;Kwon, S.J.;Tak, T.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.713-722
    • /
    • 2007
  • Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.

가속 수명시험과 다구치 방법을 활용한 신뢰성설계 방법의 개발 (Development of Reliability Design Methodology Using Accelerated Life Testing and Taguchi Method)

  • 김민;염봉진
    • 대한산업공학회지
    • /
    • 제28권4호
    • /
    • pp.407-414
    • /
    • 2002
  • The inherent reliability of a product is primarily determined in the design stage, and therefore, design engineers should be able to design reliability into the product in an efficient manner. Especially, the product should be designed such that its reliability is robust to various noise factors encountered in production and field environments. The Taguchi method can be effectively used for this purpose. However, there exist only a few attempts to integrate the Taguchi method with reliability design, and in addition, the existing works do not sufficiently consider the robustness and/or the distinction between noise and acceleration factors. This paper develops a unified approach to robust reliability design assuming that accelerated life tests are conducted at each combination of design and noise conditions. First, an experimental structure for assigning not only acceleration but also noise factors is presented. Second, the reliability at the use condition is estimated using the assumed accelerated life test model. Third, reliabilities are transformed into 'efforts' using an effort function which reflects the degree of difficulty involved in improving the reliability. Finally, an optimal setting of design parameters is determined based on the mean and standard deviation of the effort values. The above approach is illustrated with an example of a paper feeder design.

다단 기어장치의 설계법(체적 감소 및 신뢰성 향상) (Design Method of Multi-Stage Gear Drive (Volume Minimization and Reliability Improvement))

  • 박재희;이정상;정태형
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is focused on the optimum design for decreasing volume and increasing reliability of multi-stage gear drive. For the optimization on volume and reliability, multi-objective optimization is used. The genetic algorithm is introduced to multi-objective optimization method and it is used to develop the optimum design program using exterior penalty function method to solve the complicated subject conditions. A 5 staged gear drive(geared motor) is chosen to compare the result of developed optimum design method with the existing design. Each of the volume objective, reliability objective, and volume-reliability multi-objectives are performed and compared with existing design. As a result, optimum solutions are produced, which decrease volume and increase reliability. It is shown that the developed design method is good for multi-stage gear drive design.

신뢰성에 기초한 철탑구조물의 최적화에 관한 연구 (Reliability-Based Structural Optimization of Transmission Tower)

  • 김성호;김상효;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.135-140
    • /
    • 1993
  • The optimum weight design of structure is to determine the combination of structural members which minimize the weight of structures and satisfy design conditions as well. Since most of loads and design variables considered in structural design have uncertain natures, the reliability-based optimization techniques need to be developed. The aim of this study is to estabilish the general algorithm for the minimum weight design of transmission tower structure system with reliability constraints. The sequential linear programming method is used to solve non-linear minimization problems, which converts original non-linear programming problems to sequential linear programming problems. The optimal solutions are produced for various reliability levels such as reliability levels inherent in current standard transmission tower cross-section and optimal transmission tower cross-section obtained with constraints of current design criteria as well as selected target reliability index. The optimal transmission towers satisfying reliability constraints sustain consistent reliability levels on all members. Consequently, more balanced optimum designs are accomplished with less structural weight than traditional designs dealing with deterministic design criteria.

  • PDF