적합성 피드백 방법은 다음 검색 질의어와 검색 성능을 향상시키기 위해 사용자로부터 획득된 정보를 사용한다. 일반적으로 적합성 피드백 방법은 사용자로부터 획득된 정보를 새로운 질의어에 추가될 새로운 단어를 찾거나 질의어에 존재하는 단어의 가중치를 조정하는데 사용한다. 그러나 확장 불리언 검색모델에서 적합성 피드백은 이것들뿐만 아니라 질의어에 있는 단어들을 적절하게 불리언 연산자(AND/OR)로 연결시켜야 한다. Salton과 그의 동료들은 확장 불리언 모델을 위한 DNF(disjunctive normal form) 방법이라 불리는 적합성 피드백 방법을 제안하였다. 그렇지만 이 방법은 질의어를 재구성할 때 심각한 문제점을 갖고 있다. 이 논문에서는 DNF 방법의 문제점을 조사하고 이러한 문제점을 극복하기 위해 계층적 클러스터링 기법을 이용한 적합성 피드백 방법을 제안한다. 그리고 두개의 실험 데이타 집합인 TREC 1 의 DOE 컬렉션과 Web TREC 10 컬렉션을 이용하여 제안한 방법의 우수성을 보였다.
비정형 데이터를 다루는 정보검색 시스템에서 검색의 정확도는 사용자의 인지에 의존하며 따라서 사용자의 검색 평가는 시스템의 효율을 측정하는 척도의 하나이다. 적합성피드백은 사용자의 검색 평가를 시스템에 입력하여 질의의 수정, 재 검색을 반복함으로써 재현율과 정확도를 높이고자 하는 질의 확장 방법의 일종이다. 본고에서는 적합성 피드백의이론적 배경과 구현 절차를 기술하였다.
사용자 피드백은 일반적으로 사용자가 의도하는 정지영상 검색 조건을 기술하는 데만 주로 사용되어 왔다. 그러나, 본 논문에서는 사용자 피드백을 정지영상의 특징을 기술하는데 사용함으로써 사용자에 의존적이지 않은 정지영상 검색에 적용하였다. 그리고 본 논문에서는 사용자 피드백을 사용하여 각 정지영상마다 고유한 특징을 반영하도록 특징 정보와 관련된 가중치를 전문가에 비중을 두어 학습시킴으로써, 일반적인 검색 성능을 향상시킬 수 있다. 이러한 시스템을 구축하기 위해 본 논문에서는 칼라 기술자와 텍스쳐 기술자를 기반으로 한 전역 특징 정보와 지역 특징 정보, 그리고 각 기술자들간의 가중치와 기술자 내의 요소 가중치로 구성된 정지영상 기술 구조를 제안하고, 또한 잘못된 학습을 방지하기 위해 신뢰도에 기반한 가중치 학습 방법을 소개한다.
이 연구의 목적은 대량의 최신정보를 제공하는 정보필터링 시스템에서 이용자 피드백에 의해 수정질의를 자동생성하여 재검색을 수행함으로써 검색 성능을 최적화할 수 있는 방안을 찾는 데 있다. 이용자가 입력한 초기질의를 사용하여 정보필터링 시스템이 검색한 문헌에 대해 이용자가 적합성 여부를 온라인으로 입력하도록 하고, 이 피드백 결과를 토대로 '중복제거법'과 ‘저빈도제거법' 두 가지 방법에 의해각각 17개의 수정질의를 생성하여 재검색한 결과를 초기 검색결과와 비교 분석하였다. 수정질의는 각각의 방법마다 17개 패턴의 불논리 질의형태를 미리 만든 다음 초기질의에 디스크립터와 분류기호를 결합하여 생성하였으며, 재검색 결과에 대한 적합성 평가를 통해 최적의 수정질의식을 도출하였다.
최근 다양한 시각적 특징 표현들이 연구되고 많은 시스템들이 만들어졌음에도 불구하고 기존의 내용기반 영상 검색 접근 방식들은 유음성에서 한계가 있었다. 특히 사용자의 고 수준개념들과 시스템의 저 수준 특징 사이의 차이와 시각적 내용에 대한 인간의 유사성 인식의 주관성이 배제되는 한계를 지니고 있었다. 따라서 영상정보의 정확한 데이터 전달과 이를 효율적으로 검색하기 위한 방법이 요구된다. 적합성 피드백은 멀티미디어 검색에 있어 사용자가 요구하는 정보를 반영할 수 있어 영상의 검색 효율을 높일 수 있다. 본 논문에서는 기존의 적합성 피드백 기법의 성능을 향상시키기 위해 경계 값과 pre-fetching을 이용하여 긍정적 피드백과 부정적 피드백을 혼합한 개선된 영상 검색 기법을 제안한다. 또한, 제안된 피드백 기법을 이용하여 기존의 검색시스템을 보다 발전시킨 영상 검색 시스템을 구현한다.
To enable a relevance feedback paradigm to evolve itself by users' feedback, a reinforcement learning method is proposed. The feature space of the medical images is partitioned into positive and negative hypercubes by the system. Each hypercube constitutes an individual in a genetic algorithm infrastructure. The rules take recombination and mutation operators to make new rules for better exploring the feature space. The effectiveness of the rules is checked by a scoring method by which the ineffective rules will be omitted gradually and the effective ones survive. Our experiments on a set of 10,004 images from the IRMA database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to other existing approaches in the literature.
We give a mathematically rigorous description of the recently popular latent semantic indexing (LSI) method in text information retrieval theory. Also, a related problem of finding a document ranking function in linear relevance feedback is discussed.
Relevance feedback is the most popular query reformulation strategy in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant. In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation. The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones. Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.
International Journal of Fuzzy Logic and Intelligent Systems
/
제2권1호
/
pp.9-14
/
2002
Boolean retrieval is simple and elegant. However, since there is no provision for term weighting, no ranking of the answer set is generated. As a result, the size of the output might be too large or too small. Relevance feedback is the most popular query reformulation strategy. in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant. In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation. The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones. Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.
본 논문은 의사연관피드백과 의미특징기반의 용어 가중치에 의한 문서요약 방법을 제안한다. 제안된 방법은 의사연관피드백을 이용하여 사용자의 간섭을 최소화 시키며, 의미특징으로부터 유도된 용어의 가중치는 문장집합의 내부 특징을 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다. 또한 가중치가 부여된 의미특징과 확장된 질의를 이용하여서 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 용어의 가중치를 부여하지 않은 방법에 비해서 좋은 성능을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.