• 제목/요약/키워드: Relevance Feedback

검색결과 122건 처리시간 0.03초

계층적 클러스터링 기법을 이용한 확장 불리언 모델의 적합성 피드백 방법 (Relevance Feedback Method of an Extended Boolean Model using Hierarchical Clustering Techniques)

  • 최종필;김민구
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권10호
    • /
    • pp.1374-1385
    • /
    • 2004
  • 적합성 피드백 방법은 다음 검색 질의어와 검색 성능을 향상시키기 위해 사용자로부터 획득된 정보를 사용한다. 일반적으로 적합성 피드백 방법은 사용자로부터 획득된 정보를 새로운 질의어에 추가될 새로운 단어를 찾거나 질의어에 존재하는 단어의 가중치를 조정하는데 사용한다. 그러나 확장 불리언 검색모델에서 적합성 피드백은 이것들뿐만 아니라 질의어에 있는 단어들을 적절하게 불리언 연산자(AND/OR)로 연결시켜야 한다. Salton과 그의 동료들은 확장 불리언 모델을 위한 DNF(disjunctive normal form) 방법이라 불리는 적합성 피드백 방법을 제안하였다. 그렇지만 이 방법은 질의어를 재구성할 때 심각한 문제점을 갖고 있다. 이 논문에서는 DNF 방법의 문제점을 조사하고 이러한 문제점을 극복하기 위해 계층적 클러스터링 기법을 이용한 적합성 피드백 방법을 제안한다. 그리고 두개의 실험 데이타 집합인 TREC 1 의 DOE 컬렉션과 Web TREC 10 컬렉션을 이용하여 제안한 방법의 우수성을 보였다.

정보 검색 시스템의 적합성 피드백에 관한 연구 (Automatic Term Relevance Feedback in IRS)

  • 명순희
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권1호
    • /
    • pp.35-46
    • /
    • 1998
  • 비정형 데이터를 다루는 정보검색 시스템에서 검색의 정확도는 사용자의 인지에 의존하며 따라서 사용자의 검색 평가는 시스템의 효율을 측정하는 척도의 하나이다. 적합성피드백은 사용자의 검색 평가를 시스템에 입력하여 질의의 수정, 재 검색을 반복함으로써 재현율과 정확도를 높이고자 하는 질의 확장 방법의 일종이다. 본고에서는 적합성 피드백의이론적 배경과 구현 절차를 기술하였다.

  • PDF

사용자 피드백 기반의 적응적 가중치를 이용한 정지영상 검색 (Image Retrieval using Adaptable Weighting Scheme on Relevance Feedback)

  • 이진수;김현준;윤경로;이희연
    • 방송공학회논문지
    • /
    • 제5권1호
    • /
    • pp.61-67
    • /
    • 2000
  • 사용자 피드백은 일반적으로 사용자가 의도하는 정지영상 검색 조건을 기술하는 데만 주로 사용되어 왔다. 그러나, 본 논문에서는 사용자 피드백을 정지영상의 특징을 기술하는데 사용함으로써 사용자에 의존적이지 않은 정지영상 검색에 적용하였다. 그리고 본 논문에서는 사용자 피드백을 사용하여 각 정지영상마다 고유한 특징을 반영하도록 특징 정보와 관련된 가중치를 전문가에 비중을 두어 학습시킴으로써, 일반적인 검색 성능을 향상시킬 수 있다. 이러한 시스템을 구축하기 위해 본 논문에서는 칼라 기술자와 텍스쳐 기술자를 기반으로 한 전역 특징 정보와 지역 특징 정보, 그리고 각 기술자들간의 가중치와 기술자 내의 요소 가중치로 구성된 정지영상 기술 구조를 제안하고, 또한 잘못된 학습을 방지하기 위해 신뢰도에 기반한 가중치 학습 방법을 소개한다.

  • PDF

온라인 이용자 피드백을 사용한 정보필터링 시스템의 수정질의 최적화에 관한 연구 (A Study on Query Refinement by Online Relevance Feedback in an Information Filtering System)

  • 최광;정영미
    • 정보관리학회지
    • /
    • 제20권4호통권50호
    • /
    • pp.23-48
    • /
    • 2003
  • 이 연구의 목적은 대량의 최신정보를 제공하는 정보필터링 시스템에서 이용자 피드백에 의해 수정질의를 자동생성하여 재검색을 수행함으로써 검색 성능을 최적화할 수 있는 방안을 찾는 데 있다. 이용자가 입력한 초기질의를 사용하여 정보필터링 시스템이 검색한 문헌에 대해 이용자가 적합성 여부를 온라인으로 입력하도록 하고, 이 피드백 결과를 토대로 '중복제거법'과 ‘저빈도제거법' 두 가지 방법에 의해각각 17개의 수정질의를 생성하여 재검색한 결과를 초기 검색결과와 비교 분석하였다. 수정질의는 각각의 방법마다 17개 패턴의 불논리 질의형태를 미리 만든 다음 초기질의에 디스크립터와 분류기호를 결합하여 생성하였으며, 재검색 결과에 대한 적합성 평가를 통해 최적의 수정질의식을 도출하였다.

경계 값과 pre-fetching을 이용한 적합성 피드백 기법 (A Relevance Feedback Method Using Threshold Value and Pre-Fetching)

  • 박민수;황병연
    • 한국멀티미디어학회논문지
    • /
    • 제7권9호
    • /
    • pp.1312-1320
    • /
    • 2004
  • 최근 다양한 시각적 특징 표현들이 연구되고 많은 시스템들이 만들어졌음에도 불구하고 기존의 내용기반 영상 검색 접근 방식들은 유음성에서 한계가 있었다. 특히 사용자의 고 수준개념들과 시스템의 저 수준 특징 사이의 차이와 시각적 내용에 대한 인간의 유사성 인식의 주관성이 배제되는 한계를 지니고 있었다. 따라서 영상정보의 정확한 데이터 전달과 이를 효율적으로 검색하기 위한 방법이 요구된다. 적합성 피드백은 멀티미디어 검색에 있어 사용자가 요구하는 정보를 반영할 수 있어 영상의 검색 효율을 높일 수 있다. 본 논문에서는 기존의 적합성 피드백 기법의 성능을 향상시키기 위해 경계 값과 pre-fetching을 이용하여 긍정적 피드백과 부정적 피드백을 혼합한 개선된 영상 검색 기법을 제안한다. 또한, 제안된 피드백 기법을 이용하여 기존의 검색시스템을 보다 발전시킨 영상 검색 시스템을 구현한다.

  • PDF

Content-Based Image Retrieval Based on Relevance Feedback and Reinforcement Learning for Medical Images

  • Lakdashti, Abolfazl;Ajorloo, Hossein
    • ETRI Journal
    • /
    • 제33권2호
    • /
    • pp.240-250
    • /
    • 2011
  • To enable a relevance feedback paradigm to evolve itself by users' feedback, a reinforcement learning method is proposed. The feature space of the medical images is partitioned into positive and negative hypercubes by the system. Each hypercube constitutes an individual in a genetic algorithm infrastructure. The rules take recombination and mutation operators to make new rules for better exploring the feature space. The effectiveness of the rules is checked by a scoring method by which the ineffective rules will be omitted gradually and the effective ones survive. Our experiments on a set of 10,004 images from the IRMA database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to other existing approaches in the literature.

Department of Computer Science, Chosun University

  • Young-cheon kim;Moon, You-Mi;Lee, Sung-joo
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.659-665
    • /
    • 2001
  • Relevance feedback is the most popular query reformulation strategy in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant. In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation. The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones. Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.

  • PDF

A Study on Improving the Effectiveness of Information Retrieval Through P-norm, RF, LCAF

  • Kim, Young-cheon;Lee, Sung-joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.9-14
    • /
    • 2002
  • Boolean retrieval is simple and elegant. However, since there is no provision for term weighting, no ranking of the answer set is generated. As a result, the size of the output might be too large or too small. Relevance feedback is the most popular query reformulation strategy. in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant. In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation. The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones. Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.

의사연관피드백과 용어 가중치에 의한 문서요약 (Document Summarization using Pseudo Relevance Feedback and Term Weighting)

  • 김철원;박선
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.533-540
    • /
    • 2012
  • 본 논문은 의사연관피드백과 의미특징기반의 용어 가중치에 의한 문서요약 방법을 제안한다. 제안된 방법은 의사연관피드백을 이용하여 사용자의 간섭을 최소화 시키며, 의미특징으로부터 유도된 용어의 가중치는 문장집합의 내부 특징을 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다. 또한 가중치가 부여된 의미특징과 확장된 질의를 이용하여서 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 용어의 가중치를 부여하지 않은 방법에 비해서 좋은 성능을 보인다.