• Title/Summary/Keyword: Release speed

Search Result 264, Processing Time 0.024 seconds

Kinematical Analysis of Somersault with Twist in Men's Vault: Focusing on the Lou Yun and Akopian Motions

  • Lim, Kyu-Chan;Park, Hyung Suh
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.243-248
    • /
    • 2016
  • Objective: The aim of this study was to determine the kinematical characteristics of somersault with twist in the Lou Yun and Akopian motions and to provide useful information to gymnastic athletes in men's vault. Method: The study subjects were 12 male adult top athletes. After 12 trials (7 Lou Yun and 5 Akopian trials) filmed by using two digital high-speed camcorders set at 90 frames/sec, kinematical data were collected through the direct linear transformation (DLT) method. The mean differences in biomechanical variables were compared during the second flight upward phase. The kinematic characteristics of somersault with twist in the Lou Yun and Akopian motions were identified. Results: In Lou Yun motion, the vertical release velocity through horse breaking was not difficult to obtain, so the athletes had enough time to prepare for the twist. Therefore, the Lou Yun motion has an advantage to make a cat twist in the pike posture. In the Akopian motion, obtaining the horizontal velocity through horse pushing was so easy that the Akopian athletes attained a large angular impulse and angular momentum. Therefore, the Akopian motion has an advantage to making a tilt twist in the body tilting posture. Conclusion: This study suggests that gymnastic athletes should control their body segment movements in order to increase the twisting angular velocity of the whole body, which requires regulation of the longitudinal moment of inertia of the body. Moreover, athletes should prepare for the shoulder and hip twists early in order to make the landing position in advance.

Characterization of Dexamethasone-eluting PLGA Films Coated on Capsular Tension Ring to Prevent Posterior Capsule Opacification

  • Chang, Byung-Kon;Kim, Bo-Gyun;Kim, Young-Jae;Kang, Myung-Joo;Lee, Jae-Hwi;Choi, Young-Wook
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.425-430
    • /
    • 2008
  • The objectives of this study were to prepare PLGA film onto the surface of the capsular tension ring (CTR) for controlled drug release and investigate the influence of plasticizers, the test drug and measurement conditions on flexibility of the film. Film solutions were prepared by dissolving PLGA, plasticizer (triethyl citrate, TEC or polyethylene glycol, PEG), test drug (dexamethasone) in ethyl acetate then films were prepared by spray coating and evaporation method. Then, the flexibility of PLGA film was determined by elongation test. The addition of plasticizer, PEG or TEC to PLGA copolymer caused a depression of glass transition temperature ($T_g$) and the elasticity of PLGA films increased. The addition of dexamethasone to the PLGA/TEC matrix decreased the flexibility of film. Dimensional factors of the PLGA films such as width and thickness were significantly influenced on flexibility of films and film length and elongation speed had no considerable influence on elongation of films. In this study, sufficiently flexible and stable PLGA films capable of being coated onto CTR could be prepared. This PLGA films can be used as a platform for local drug delivery.

Effects of Bio-diesel blending rate on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with EGR rate (커먼레일식 디젤기관의 EGR율과 바이오디젤 혼합율에 따른 연소 및 배기 특성)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this study is to investigate the specific characteristics of combustion and exhaust emissions on a 4-cylinder common rail diesel engine as EGR rate and the rate of blended bio-diesel was altered. Bio-diesel fuel which is a sort of alternative fuels can be adapted to diesel engine directly without modifying. This study was performed to 2000rpm of engine speed with torque 30Nm while EGR rate and the rate of blended bio-diesel was changed. Decreasing combustion pressure and increasing the rate of heat were occurred when we had changed the EGR rate on the 20% of bio-diesel blended diesel fuel. The maximum pressure of combustion and the IMEP became higher as the EGR rate and the rate of blended bio-diesel were changed. Exhaust gas temperature was increased the higher rate of the blended bio-diesel under the fixed EGR rate. However, it went down as the EGR rate increased. The amounts of CO and Soot were reduced with increasing the rate of the blended bio-diesel without changing EGR rate and raised with increasing of the EGR rate. On the fixed EGR rate, NOx was increased along with growing the rate of the bio-diesel. On the other hand, it was decreased while EGR rate were going up.

Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model

  • Choi, Geun-Sik;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny;Kim, Ki-Hyun;Lee, Jin-Hong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.68-79
    • /
    • 2018
  • The Ki-Jang research reactor (KJRR), a new research reactor in Korea, is being planned to fulfill multiple purposes. In this study, as an assessment of the environmental radiological impact, we characterized the atmospheric dispersion and deposition of radioactive materials released by an unexpected incident at KJRR using the weather research and forecasting-mesoscale model interface program-California Puff (WRF-MMIF-CALPUFF) model system. Based on the reproduced three-dimensional gridded meteorological data obtained during a 1-year period using WRF, the overall meteorological data predicted by WRF were in agreement with the observed data, while the predicted wind speed data were slightly overestimated at all stations. Based on the CALPUFF simulation of atmospheric dispersion (${\chi}/Q$) and deposition (D/Q) factors, relatively heavier contamination in the vicinity of KJRR was observed, and the prevailing land breeze wind in the study area resulted in relatively higher concentration and deposition in the off-shore area sectors. We also compared the dispersion characteristics between the PAVAN (atmospheric dispersion of radioactive release from nuclear power plants) and CALPUFF models. Finally, the meteorological conditions and possibility of high doses of radiation for relatively higher hourly ${\chi}/Q$ cases were examined at specific discrete receptors.

A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD (CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구)

  • Seok, Jun;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

Sprinkler Layout Optimization Based on Fire Simulation and Mathematical Programming including Installation and Damage Costs (설치비와 피해액의 정형화를 통한 화재 시뮬레이션 및 수리계획법에 기반을 한 스프링클러의 배치 최적화)

  • Lee, Ki-Jun;Shin, Young-Sup T.;Hong, Gi-Hoon;Joo, Ki-Don;Shin, Dong-Il;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.52-59
    • /
    • 2012
  • The sprinkler system is regarded as the most effective fire extinguishing system. In this study, we proposed a sprinkler layout optimization framework based on fire simulation and mathematical programming. As a case study, the target space in the form of ordinary residence was set up with the size of $5.2m(L){\times}5.4m(W){\times}2.4m(H)$, and we constructed the fire scenario that polyurethane couch was ignited through carelessness. And we simulated and analyzed fire speed, temperature change and heat release rate according to the type and number of sprinklers installed. Through the formulation of installation and damage costs depending on sprinklers, the sprinkler layout showing optimal performance was resulted from mathematical programming.

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke;Chen, Weihua;Liang, Manchun;Zhou, Jianqiu;Wang, Yunfu;He, Shuijun;Yang, Jie;Yang, Dandan;Shen, Hongmin;Wang, Xiangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2377-2386
    • /
    • 2021
  • To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.

Energy Based Source Location by Using Acoustic Emission for Damage Detection in Steel and Composite CNG Tank (금속 및 복합재 CNG 탱크에서의 손상 검출을 위한 음향방출 에너지 기반 위치표정 기술)

  • Kim, Il-Sik;Han, Byeong-Hee;Park, Choon-Su;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.332-340
    • /
    • 2015
  • Acoustic emission (AE) is an effective nondestructive test that uses transient elastic wave generated by the rapid release of energy within a material to detect any further growth or expansion of existing defects. Over the past decades, because of environmental issues, the use of compressed natural gas (CNG) as an alternative fuel for vehicles is increasing because of environmental issues. For this reason, the importance and necessity of detecting defects on a CNG fuel tank has also come to the fore. The conventional AE method used for source location is highly affected by the wave speed on the structure, and this creates problems in inspecting a composite CNG fuel tank. Because the speed and dispersion characteristics of the wave are different according to direction of structure and laminated layers. In this study, both the conventional AE method and the energy based contour map method were used for source location. This new method based on pre-acquired D/B was used for overcoming the limitation of damage localization in a composite CNG fuel tank specimen which consists of a steel liner cylinder overwrapped by GFRP. From the experimental results, it is observed that the damage localization is determined with a small error at all tested points by using the energy based contour map method, while there were a number of mis-locations or large errors at many tested points by using the conventional AE method. Therefore, the energy based contour map method used in this work is more suitable technology for inspecting composite structures.

Size-segregated Allergenic Particles Released from Airborne Cryptomeria japonica Pollen Grains during the Yellow Sand Events within the Pollen Scattering Seasons

  • Wang, Qingyue;Gong, Xiumin;Suzuki, Miho;Lu, Senlin;Sekiguchi, Kazuhiko;Nakajima, Daisuke;Miwa, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.191-198
    • /
    • 2013
  • Cryptomeria japonica pollen is the most common pollen, which are scattering during each spring season in Japan. Japanese cedar (Cryptomeria japonica) pollinosis is one of seasonal allergic rhinitis that mainly occurs in Japan. In addition, long range transportation of Yellow Sand from the East Asian continent was also found during the pollen scattering seasons in Japan. Therefore, the interaction or impact between pollen and Yellow Sand should be concerned. In this study, our objective was to investigate the airborne behaviour of Cryptomeria japonica pollen grains and its size-segregated allergenic (Cry j 1) particles as the airborne tracer of Cryptomeria japonica pollen during the Yellow Sand events. Airborne Cryptomeria japonica pollen grains and its size-segregated allergenic particles were collected at roadside of urban residential zones of Saitama city during the pollination periods from February to March in two year investigation of 2009 and 2010. The overlap of Yellow Sand events and dispersal peak of pollen grains was observed. According to the Meteorological data, we found that the peaks of airborne pollen grains appeared under higher wind speed and temperature than the previous day. It was thought that Yellow Sand events and airborne pollen counts were related to wind speed. From the investigation of the airborne behavior of the size-segregated allergen particles by determining Cry j 1 with Surface Plasmon Resonance (SPR), the higher concentrations of the allergenic Cry j 1 were detected in particle size equal to or less than $1.1{\mu}m$($PM_{1.1}$) than other particle sizes during Yellow Sand events, especially in the rainy day. We conclude that rainwater trapping Yellow Sand is one of the important factors that affect the release of allergenic pollen species of Cry j 1. Therefore, it is very important to clarify the relationships between Cryptomeria japonica pollen allergenic species and chemical contents of the Yellow Sand particles in further studies.

A study on improving fairness and congestion control of DQDB using buffer threshold value (버퍼의 문턱치값을 이용한 DQDB망의 공평성 개선 및 혼잡 제어에 관한 연구)

  • 고성현;조진교
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.618-636
    • /
    • 1997
  • DQDB(Distributed Queue Dual Bus) protocol, the IEEE 802.6 standard protocol for metropolitan area networks, does not fully take advantage of the capabilities of dual bus architecture. Although fairness in bandwidth distribution among nodes is improved when using so called the bandwidth balancing mechanism, the protocol requires a considerable amount of time to adjust to changes in the network load. Additionally, the bandwidth balancing mechanism leaves a portion of the available bandwidth unused. In a high-speed backbone network, each node may act as a bridge/ router which connects several LANs as well as hosts. However, Because the existence of high speed LANs becomes commonplace, the congestionmay occur on a node because of the limitation on access rate to the backbone network and on available buffer spaces. to release the congestion, it is desirable to install some congestion control algorithm in the node. In this paper, we propose an efficient congestion control mechanism and fair and waster-free MAC protocol for dual bus network. In this protocol, all the buffers in the network can be shared in such a way that the transmission rate of each node can be set proportional to its load. In other words, a heavily loaded node obtains a larger bandwidth to send the sements so tht the congestion can be avoided while the uncongested nodes slow down their transmission rate and store the incoming segments into thier buffers. this implies that the buffers on the network can be shared dynamically. Simulation results show that the proposed probotol significantly reduces the segment queueing delay of a heavily loaded node and segment loss rate when compared with original DQDB. And it enables an attractive high throughput in the backbone network. Because in the proposed protocol, each node does not send a requet by the segment but send a request one time in the meaning of having segments, the frequency of sending requests is very low in the proposed protocol. so the proposed protocol signigificantly reduces the segment queuing dely. and In the proposed protocol, each node uses bandwidth in proportion to its load. so In case of limitation of available buffer spaces, the proposed protocol reduces segment loss rate of a heavily loaded node. Bandwidth balancing DQDB requires the wastage of bandwidth to be fair bandwidth allocation. But the proposed DQDB MAC protocol enables fair bandwidth without wasting bandwidth by using bandwidth one after another among active nodes.

  • PDF