• Title/Summary/Keyword: Relay-assisted D2D

Search Result 7, Processing Time 0.016 seconds

Interference Cancellation for Relay-Assisted D2D Communication

  • Zhao, Hongyi;Cao, Yang;Liu, Yingzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3276-3292
    • /
    • 2015
  • Relay-assisted D2D communication extends the communication range of the D2D pairs and helps users to form D2D pairs effectively. However, due to the introduction of the multi-hop relaying, the D2D communication has to occupy extra transmission time, which may decrease the efficiency of the communication system. In this paper, we propose a scheme to make node receive D2D signal and BS signal at overlapping time to improve the spectrum efficiency according to ZigZag decoding and successive-interference-cancellation (SIC). In this way, more data can be delivered during the same duration, thus the network throughput can be further improved. Numerical results verify the performance improvement of the proposed scheme when compared with a baseline scheme. Moreover, we expand the proposed scheme from one-hop relay scenario to multi-hop relay scenario.

Coalition Formation Game Based Relay Selection and Frequency Sharing for Cooperative Relay Assisted Wireless D2D Networks with QoS Constraints

  • Niu, Jinxin;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5253-5270
    • /
    • 2016
  • With device-to-device (D2D) communications, an inactive user terminal can be utilized as a relay node to support multi-hop communication so that connective experience of the cell-edge user as well as the capacity of the whole system can be significantly improved. In this paper, we investigate the spectrum sharing for a cooperative relay assisted D2D communication underlying a cellular network. We formulate a joint relay selection and channel assignment problem to maximize the throughput of the system while guaranteeing the quality of service (QoS) requirements of cellular users (CUs) and D2D users (DUs). By exploiting coalition formation game theory, we propose two algorithms to solve the problem. The first algorithm is designed based on merge and split rules while the second one is developed based on single user's movement. Both of them are proved to be stable and convergent. Simulation results are presented to show the effectiveness of the proposed algorithms.

Multiple-Relay-assisted SSB SFBC SC-FDMA Transmission System (다중중계기 기반의 SSB SFBC SC-FDMA 시스템)

  • Won, HuiChul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.29-37
    • /
    • 2020
  • This paper proposes a multiple-relay-assisted single side band (SSB) space frequency block code (SFBC) single carrier (SC)-frequency division multiple access (FDMA) system and measures the performance of SSB SFBC SC-FDMA transmission system with the signal-to-noise power ratio SNR) between relays and a destination station. As we know, the performance of relay-assisted transmission systems can be easily improved by re-transmitting to the destination station after applying block code to the recovered transmitted signals of relays. In this paper, the performance improvement of the relay-assisted SSB SC-FDMA system can be obtained without any significant increase of system computational complexity by implementing block code with the complex conjugates symmetric characteristic of SSB system. The simulation result shows that the SNR performance of the proposed multiple-relay-assisted SSB SFBC SC-FDMA system is about 4 dB better than the performance of the single-relay-assisted SSB SC-FDMA system at the symbol error rate of 10-2.

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.

Shared Relay-Based Interference Management Schemes for Device-to-Device Radio Underlaying Cellular Networks (셀룰러 네트워크상의 D2D 통신을 위한 공유릴레이 기반 간섭 관리 기법)

  • Yang, Mochan;Wu, Shanai;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.371-380
    • /
    • 2013
  • D2D (Device-to-Device) communication on an underlying cellular infrastructure which exploits the same spectrum has several advantages such as increased resource utilization and improved cellular coverage. However, D2D communication system needs to cope with ICI (Inter-Cell Interference) and interference between cellular and D2D links. As a result, macro UEs (User Equipments), especially those located near cell edge, will suffer from serious link performance degradation. We propose a novel interference avoidance mechanism assisted by SRN (Shared Relay Node) in this paper. SRN not only performs data re-transmission as a usual Type II relay but also has several features newly defined to avoid interference between cellular and D2D links. In particular, we suggest resource allocation methods based on the SRN for effective interference avoidance, and evaluate their performance through computer simulations.

Relay-assisted multiuser MIMO-DQSM system for correlated fading channels

  • Francisco R. Castillo-Soria;Carlos Gutierrez;Fermin M. Maciel-Barboza;Viktor I. Rodriguez Abdala;Jayanta Datta
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.184-193
    • /
    • 2024
  • This paper presents the performance evaluation of an amplify-and-forward (AF) relay-assisted multiuser multiple input-multiple output (MU-MIMO) downlink transmission system for correlated fading channels. The overall system performance was improved by incorporating a double-quadrature spatial modulation (DQSM) scheme. The bit error rate (BER) performance and detection complexity of the AF-MU-MIMO-DQSM system were analyzed and compared with those of a conventional AF-MU-MIMO system under the same conditions and parameters. The results showed that the correlated fading channel severely affected the performance of systems with higher spectral efficiency (SE). Considering an SE of 12 bpcu/user, the AF-MU-MIMO-DQSM system yielded a gain of up to 3 dB in BER performance compared with that of its conventional counterpart for the analyzed cases. In terms of detection complexity, the AF-MU-MIMO-DQSM system showed a reduction of up to 56 % compared with that of the conventional system for the optimal maximum likelihood detection criterion.

Space-Frequency Block Coded Relay Transmission System for a Shadow Area (음영 지역을 위한 주파수 공간 블록 부호화 중계기 전송 시스템)

  • Won, Hui-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5776-5782
    • /
    • 2014
  • Relay-assisted wireless communication systems have been studied widely to cope with shadow areas and extend the cell coverage. This paper proposes a space-frequency (SF) block coded single carrier-frequency division multiple access (SC-FDMA) transmission system in a relaying multi-path shadow area and present the performance comparison of SC-FDMA systems based on the signal-to-noise power ratio (SNR) between a relay and a destination station. The performance of relaying SC-FDMA systems can be improved by applying SF block code to the recovered signals of relays before re-transmitting them. The simulation result showed that the SNR performance of the proposed SF block coded relaying SC-FDMA system was approximately 5 dB better than the SNR performance of the single-path relaying SC-FDMA system at a symbol error rate (SER) of $10^{-2}$.