• Title/Summary/Keyword: Relay network

Search Result 702, Processing Time 0.03 seconds

Power Splitting-based Analog Network Coding for Improving Physical Layer Security in Energy Harvesting Networks (에너지 하베스팅 네트워크에서 물리계층 보안을 향상시키기 위한 파워 분할 기반의 아날로그 네트워크 코딩)

  • Lee, Kisong;Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1849-1854
    • /
    • 2017
  • Recently, RF energy harvesting, in which energy is collected from the external RF signals, is considered as a promising technology to resolve the energy shortage problem of wireless sensors. In addition, it is important to guarantee secure communication between sensors for implementing Internet-of-Things. In this paper, we propose a power splitting-based network analog coding for maximizing a physical layer security in 2-hop networks where the wireless-powered relay can harvest energy from the signals transmitted by two sources. We formulate systems where two sources, relay, and eavesdropper exist, and find an optimal power splitting ratio for maximizing the minimum required secrecy capacity using an exhaustive search. Through simulations under various environments, it is demonstrated that the proposed scheme improves the minimum required secrecy capacity by preventing the eavesdropper from overhearing source signals, compared to the conventional scheme.

Smart Grid Cooperative Communication with Smart Relay

  • Ahmed, Mohammad Helal Uddin;Alam, Md. Golam Rabiul;Kamal, Rossi;Hong, Choong Seon;Lee, Sungwon
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.640-652
    • /
    • 2012
  • Many studies have investigated the smart grid architecture and communication models in the past few years. However, the communication model and architecture for a smart grid still remain unclear. Today's electric power distribution is very complex and maladapted because of the lack of efficient and cost-effective energy generation, distribution, and consumption management systems. A wireless smart grid communication system can play an important role in achieving these goals. In this paper, we describe a smart grid communication architecture in which we merge customers and distributors into a single domain. In the proposed architecture, all the home area networks, neighborhood area networks, and local electrical equipment form a local wireless mesh network (LWMN). Each device or meter can act as a source, router, or relay. The data generated in any node (device/meter) reaches the data collector via other nodes. The data collector transmits this data via the access point of a wide area network (WAN). Finally, data is transferred to the service provider or to the control center of the smart grid. We propose a wireless cooperative communication model for the LWMN.We deploy a limited number of smart relays to improve the performance of the network. A novel relay selection mechanism is also proposed to reduce the relay selection overhead. Simulation results show that our cooperative smart grid (coopSG) communication model improves the end-to-end packet delivery latency, throughput, and energy efficiency over both the Wang et al. and Niyato et al. models.

Efficient Relay Node Selection in Stochastic DTN Model (확률적 DTN 모델에서 효율적인 중계 노드 선택 방법)

  • Dho, Yoon-Hyng;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.367-370
    • /
    • 2017
  • This paper proposes a method for selecting efficient relay nodes in stochastic DTN model. Delay Tolerant Network (DTN) uses the Carry and Forward method, which creates a bundle layer for efficient communication, selects relay nodes between different networks and heterogeneous networks, and forwards messages. DTN is basically composed of mobile nodes so DTN has no fixed routing route and it has long latency due to intermittent connection. Therefore, the nodes constituting the DTN necessarily have the characteristics to store the messages, and the capacity of the stored messages and nodes affects the performance of the network. Stochastic DTN model proposed a Markov model that changes randomly over time to analyze the performance of DTN. In this paper, we use stochastic message distribution and node contact probabilities using contact time analyzed through message generation and extinction in order to select efficient relay nodes in stochastic DTN model.

  • PDF

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

Interference Aware Downlink Channel Allocation Algorithm to Improve Throughput on OFDMA Cellular Multihop Networks with Random Topology (임의의 토폴로지를 갖는 OFDMA 다중홉 셀룰러 네트워크의 하향링크 간섭 완화를 위한 채널 할당 방법)

  • Lim, Sunggook;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • Upcoming cellular networks such as LTE-advanced and IEEE 802.16m are enhanced by relay stations to support high data rate multimedia services and minimize the shadow zone with low cost. Enhancing the relay stations, however, divides the multihop cellular network into smaller microcells and the distance between microcells is closer, which intends large intra-cell and inter-cell interference. Especially the access link on downlink in the OFDMA cellular network is the throughput bottleneck due to the severe interference caused by base stations and relay stations transmitting large data to mobile stations simultaneously. In this paper, we present interference aware channel allocation algorithm to avoid severe interference on multihop cellular networks with random topology. Proposed algorithm increases SINR(signal to interference plus noise ratio) and decreases number of required control messages for channel allocation, so that increases overall throughput on the networks.

A Reporting Interval Adaptive, Sensor Control Platform for Energy-saving Data Gathering in Wireless Sensor Networks

  • Choi, Wook;Lee, Yong;Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.247-268
    • /
    • 2011
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting interval varies according to the type of application. Such considerations require an application-specific, parameter tuning paradigm allowing us to maximize energy conservation prolonging the operational network lifetime. In this paper, we propose a reporting interval adaptive, sensor control platform for energy-saving data gathering in wireless sensor networks. The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to application-dependent or time-varying, reporting interval requirements. The proposed sensor control platform is based upon a two phase clustering (TPC) scheme which constructs two types of links within each cluster - namely, direct link and relay link. The direct links are used for control and time-critical, sensed data forwarding while the relay links are used only for multi-hop data reporting. Sensors opportunistically use the energy-saving relay link depending on the user reporting, interval constraint. We present factors that should be considered in deciding the total number of relay links and how sensors are scheduled for sensed data forwarding within a cluster for a given reporting interval and link quality. Simulation and implementation studies demonstrate that the proposed sensor control platform can help individual sensors save a significant amount of energy in reporting data, particularly in dense sensor networks. Such saving can be realized by the adaptability of the sensor to the reporting interval requirements.

A Study on Flow Variation with Geometrical Characteristics of Fault Zones Using Three-dimensional Discrete Fracture Network (3차원 이산 균열망 모형을 이용한 단층지역의 기하학적 특성에 따른 흐름 변화에 관한 연구)

  • Jeong, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.326-326
    • /
    • 2016
  • The fault can be defined, in a geological context, as a rupture plane showing a significant displacement generated in the case that the local tectonic stress exceeds a threshold of rupture along a particular plane in a rock mass. The hydrogeological properties of this fault can be varied with the spatial distribution and the connectivity of void spaces in a fault. When the formation of fault includes the process of the creation and the destruction of void spaces, a complex relation between the displacement along the fault and the variation of void spaces. In this study, the variation of flow with the geometrical characteristics of the fault is simulated and analyzed by using the three-dimensional discrete fracture network model. Three different geometrical characteristics of the faults are considered in this study: 1) simple hydraulic conductive plane, 2) damaged zone, and 3) relay structure of faults.

  • PDF

Stability Evaluation of Terminal Group for Inter-Vehicle Communication Network with an Autonomous Relay Access Scheme

  • Chamchoy, Monchai;Kojima, Fumihide;Harada, Hiroshi;Tangtisanon, Prakit;Fujise, Masayuki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.564-567
    • /
    • 2002
  • This paper evaluates the stability of the terminal group for he inter-vehicle communication (IVC) network with an autonomous relay access scheme. Some stability criterions such as updating rate, terminal group convergence probability and total path average holding time have been conducted by computer simulation. As the results, dynamic moving of the terminal is the serious problem that can degrade the stability of the terminal group and directly affect to overall performance of the IVC network.

  • PDF

Optimal topology in Wibro MMR Network Using a Genetic Algorithm (유전 알고리즘을 이용한 Wibro MMR 네트워크의 최적 배치 탐색)

  • Oh, Dongik;Kim, Woo-Je
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.235-245
    • /
    • 2008
  • The purpose of this paper is to develop a genetic algorithm to determine the optimal locations of base stations and relay stations in Wibro MMR Network. Various issues related to the genetic algorithm such as solution representation, selection method, crossover operator, mutation operator, and a heuristic method for improving the quality of solutions are presented. The computational results are presented for determining optimal parameters for the genetic algorithm, and show the convergence of the genetic algorithm.