• 제목/요약/키워드: Relay assignment

Search Result 22, Processing Time 0.025 seconds

Joint Relay Selection and Resource Allocation for Delay-Sensitive Traffic in Multi-Hop Relay Networks

  • Sha, Yan;Hu, Jufeng;Hao, Shuang;Wang, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3008-3028
    • /
    • 2022
  • In this paper, we investigate traffic scheduling for a delay-sensitive multi-hop relay network, and aim to minimize the priority-based end-to-end delay of different data packet via joint relay selection, subcarrier assignment, and power allocation. We first derive the priority-based end-to-end delay based on queueing theory, and then propose a two-step method to decompose the original optimization problem into two sub-problems. For the joint subcarrier assignment and power control problem, we utilize an efficient particle swarm optimization method to solve it. For the relay selection problem, we prove its convexity and use the standard Lagrange method to deal with it. The joint relay selection, subcarriers assignment and transmission power allocation problem for each hop can also be solved by an exhaustive search over a finite set defined by the relay sensor set and available subcarrier set. Simulation results show that both the proposed routing scheme and the resource allocation scheme can reduce the average end-to-end delay.

Relay Assignment in Cooperative Communication Networks: Distributed Approaches Based on Matching Theory

  • Xu, Yitao;Liu, Dianxiong;Ding, Cheng;Xu, Yuhua;Zhang, Zongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5455-5475
    • /
    • 2016
  • In this article, we model the distributed relay assignment network as a many-to-one matching market with peer effects. We discuss two scenarios for throughput optimization of relay networks: the scenario of aggregate throughput optimization and the scenario of fairness performance optimization. For the first scenario, we propose a Mutual Benefit-based Deferred Acceptance (MBDA) algorithm to increase the aggregate network throughput. For the second scenario, instead of using the alternative matching scheme, a non-substitution matching algorithm (NSA) is designed to solve the fairness problem. The NSA improves the fairness performance. We prove that both two algorithms converge to a globally stable matching, and discuss the practical implementation. Simulation results show that the performance of MBDA algorithm outperforms existing schemes and is almost the same with the optimal solution in terms of aggregate throughput. Meanwhile, the proposed NSA improves fairness as the scale of the relay network expands.

Optimization of Coverage Extension in OFDMA Based MMR System (OFDMA 방식을 사용하는 MMR시스템의 최적화된 커버리지 확장)

  • Kim, Seung-Yeon;Kim, Se-Jin;Ryu, Seung-Wan;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.567-574
    • /
    • 2008
  • In this paper, we propose an optimal coverage extension scheme in the OFDMA based mobile multi-hop relay system. First, we propose an optimal frequency and time assignment scheme for maximizing system throughput and analyze the frame efficiency of schemes. Then, under the given BS capacity, we find the maximum number of relay hops that can be used to estimate the maximum coverage area of a BS in a multi-hop relay system. Analytical results show that the proposed scheme is efficient in coverage extension and throughput maximization in OFDMA based multi-hop relay system. Our work may be a rough guideline to control the parameters for multi-hop relay system optimization.

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.

A Genetic Algorithm Approach to the Frequency Assignment Problem on VHF Network of SPIDER System

  • Kwon, O-Jeong
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.56-69
    • /
    • 2000
  • A frequency assignment problem on time division duplex system is considered. Republic of Korea Army (ROKA) has been establishing an infrastructure of tactical communication (SPIDER) system for next generation and it will be a core network structure of system. VHF system is the backbone network of SPIDER, that performs transmission of data such as voice, text and images. So, it is a significant problem finding the frequency assignment with no interference under very restricted resource environment. With a given arbitrary configuration of communications network, we find a feasible solution that guarantees communication without interference between sites and relay stations. We formulate a frequency assignment problem as an Integer Programming model, which has NP-hard complexity. To find the assignment results within a reasonable time, we take a genetic algorithm approach which represents the solution structure with available frequency order, and develop a genetic operation strategies. Computational result shows that the network configuration of SPIDER can be solved efficiently within a very short time.

  • PDF

Dynamic IP Assignment Method for Wireless Internet Service of Visited Mobile ISP Subscriber on GPRS Network (GPRS망을 방문한 이동 ISP 가입자의 무선 인터넷 서비스를 위한 동적 IP 할당 방법)

  • Park, Jeong-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.951-958
    • /
    • 2004
  • This paper describes problems when visited ISP subscriber gets dynamic IP address in home ISP for wireless internet service on GPRS network. We propose a specific DHCP relay for wireless internet service of visited ISP subscriber on GPRS network. We designed and implemented the specific DHCP relay and installed it in ISP testbed. We show the allocated dynamic IP address using specific DHCP relay for visited ISP subscriber on GPRS network. Now we think it is possible the visited ISP subscriber can access wireless internet service on GPRS network using specific DHCP relay, and UMTS system can be managed IP address for subscriber roaming.

Coalition Formation Game Based Relay Selection and Frequency Sharing for Cooperative Relay Assisted Wireless D2D Networks with QoS Constraints

  • Niu, Jinxin;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5253-5270
    • /
    • 2016
  • With device-to-device (D2D) communications, an inactive user terminal can be utilized as a relay node to support multi-hop communication so that connective experience of the cell-edge user as well as the capacity of the whole system can be significantly improved. In this paper, we investigate the spectrum sharing for a cooperative relay assisted D2D communication underlying a cellular network. We formulate a joint relay selection and channel assignment problem to maximize the throughput of the system while guaranteeing the quality of service (QoS) requirements of cellular users (CUs) and D2D users (DUs). By exploiting coalition formation game theory, we propose two algorithms to solve the problem. The first algorithm is designed based on merge and split rules while the second one is developed based on single user's movement. Both of them are proved to be stable and convergent. Simulation results are presented to show the effectiveness of the proposed algorithms.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

A QoS-aware Adaptive Coloring Scheduling Algorithm for Co-located WBANs

  • Wang, Jingxian;Sun, Yongmei;Luo, Shuyun;Ji, Yuefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5800-5818
    • /
    • 2018
  • Interference may occur when several co-located wireless body area networks (WBANs) share the same channel simultaneously, which is compressed by resource scheduling generally. In this paper, a QoS-aware Adaptive Coloring (QAC) scheduling algorithm is proposed, which contains two components: interference sets determination and time slots assignment. The highlight of QAC is to determine the interference graph based on the relay scheme and adapted to the network QoS by multi-coloring approach. However, the frequent resource assignment brings in extra energy consumption and packet loss. Thus we come up with a launch condition for the QAC scheduling algorithm, that is if the interference duration is longer than a threshold predetermined, time slots rescheduling is activated. Furthermore, based on the relative distance and moving speed between WBANs, a prediction model for interference duration is proposed. The simulation results show that compared with the state-of-the-art approaches, the QAC scheduling algorithm has better performance in terms of network capacity, average delay and resource utility.

Resource Allocation Schemes for Legacy OFDMA Systems with Two-Way DF Relay (양방향 복호전달 릴레이를 사용하는 레거시 OFDMA 시스템에서의 자원 할당 기법)

  • Seo, Jongpil;Han, Chulhee;Park, Seongho;Chung, Jaehak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.593-600
    • /
    • 2014
  • OFDMA systems solves frequency selective fading problem and provides improved performance by optimal allocation of subcarriers and transmit power. Two-way relay systems provide improved spectral efficiency compared to that of the conventional half-duplex relay using bidirectional communications. In legacy OFDMA system such as WiBro, two-way DF relay utilization causes pilot re-assignment and impossibility of channel estimation and decoding at relay nodes by self-interference. In this paper, resource allocation schemes for legacy OFDMA systems with two-way DF relay are proposed. The proposed schemes allocate subcarriers considering destinations nodes which are connected to relay nodes as individual nodes which are directly connected to a base station. Subsequently, the proposed schemes compensate bandwidth loss due to orthogonal allocations by overlapped allocating unused subcarriers at other noes. Numerical simulations show that the proposed resource allocation schemes provide improved performance compared with orthogonal allocation.