• Title/Summary/Keyword: Relay Beamforming

Search Result 40, Processing Time 0.025 seconds

Joint optimization of beamforming and power allocation for DAJ-based untrusted relay networks

  • Yao, Rugui;Lu, Yanan;Mekkawy, Tamer;Xu, Fei;Zuo, Xiaoya
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.714-725
    • /
    • 2018
  • Destination-assisted jamming (DAJ) is usually used to protect confidential information against untrusted relays and eavesdroppers in wireless networks. In this paper, a DAJ-based untrusted relay network with multiple antennas installed is presented. To increase the secrecy, a joint optimization of beamforming and power allocation at the source and destination is studied. A matched-filter precoder is introduced to maximize the cooperative jamming signal by directing cooperative jamming signals toward untrusted relays. Then, based on generalized singular-value decomposition (GSVD), a novel transmitted precoder for confidential signals is devised to align the signal into the subspace corresponding to the confidential transmission channel. To decouple the precoder design and optimal power allocation, an iterative algorithm is proposed to jointly optimize the above parameters. Numerical results validate the effectiveness of the proposed scheme. Compared with other schemes, the proposed scheme shows significant improvement in terms of security performance.

Joint Destination-Relay Selection and Antenna Mode Selection in Full-Duplex Relay Network

  • Tang, Yanan;Gao, Hui;Su, Xin;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2831-2847
    • /
    • 2017
  • In this paper, a joint destination-relay selection and antenna mode selection scheme for full-duplex (FD) relay network is investigated, which consists of one source node, N FD amplify-and-forward (AF) relays and M destination nodes. Multiple antennas are configured at the source node, and beamforming technique is adopted. Two antennas are employed at each relay, one for receiving and the other for transmitting. Only one antenna is equipped at each destination node. In the proposed scheme, the best destination node is firstly selected according to the direct links between the source node and destination nodes. Then the transmit and receive mode of two antennas at each relay is adaptively selected based on the relaying link condition. Meanwhile, the best relay with the optimal Tx/Rx antenna configuration is selected to forward the signals. To characterize the performance of the proposed scheme, the closed-form expression of the outage probability is derived; meanwhile, the simple asymptotic expressions are also obtained. Our analysis shows that the proposed scheme obtains the benefits of multi-relay diversity and multi-destination diversity. Moreover, extra space diversity in the medium SNR region can be achieved due to the antenna selection at the relay. Finally, Monte-Carlo simulations are provided to consolidate the analytical results, and show the effectiveness of the proposed scheme.

Probabilistic Constrained Approach for Distributed Robust Beamforming Design in Cognitive Two-way Relay Networks

  • Chen, Xueyan;Guo, Li;Dong, Chao;Lin, Jiaru;Li, Xingwang;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2018
  • In this paper, we propose the distributed robust beamforming design scheme in cognitive two-way amplify-and-forward (AF) relay networks with imperfect channel state information (CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this paper is to design the robust beamformer which minimizes the total transmit power of the collaborative relays. This design will guarantee the outage probability of signal-to-interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and satisfies the outage probability of interference generated on the primary user (PU) above the predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties in the two-way transmission, the probabilistic constrained optimization problem is intractable and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to the standard form through a series of matrix transformations. We then accomplish the problem by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the worst-case approach based on S-Procedure. The simulation results indicate that the robust beamforming designs based on the probabilistic method and the worst-case method are both robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility rate and consumes less power.

Optimal Power Allocation for Spatial Division Multiplexing Scheme at Relays in Multiuser Distributed Beamforming Networks (다중 사용자 분산 빔포밍 네트워크의 중계기에서의 공간 분할 다중화 기법을 위한 최적 전력 할당 방법)

  • Ahn, Dong-Gun;Seo, Bang-Won;Jeong, Cheol;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.360-370
    • /
    • 2010
  • In this paper, a distributed beamforming problem is considered in an amplify-and-forward (AF) wireless relay network consist of multiple source-destination pairs and relaying nodes. To exploit degree of freedom of the number of beamformers, in the first step, we proposed that the sources transmit their signals through orthogonal channels. During the second step, the relays transmit their received signals multiplied by complex weights to amplify and compensate for phase changes introduced by the backward channels through one common channel. The optimal beamforming vectors are obtained through minimization of the total relay transmit power while the signal-to-interference-plus-noise ratios (SINRs) at the destinations are above certain thresholds to meet a quality of services (QoSs) level. In the numerical example, it is shown that the proposed scheme needs less transmit power for moderate network data rates than other schemes, such as space division multiplexing or time-division multiplexing scheme.

An Estimation Technique of Cell ID and DoA for a Mobile Relay Station Under a Multipath Channel (다중 경로 채널에서의 이동 릴레이의 셀 탐색 및 DoA 추정 방법)

  • Pec, Rothna;Kim, In Su;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.58-67
    • /
    • 2013
  • In this paper, a mobile relay station(MRS) for vehicles with a beamforming antenna is considered to increase the reliability of a transmission link, especially for the MRS at cell boundary. Cell searching and direction-of-arrival(DoA) estimation methods for an MRS with a uniform linear array(ULA) are proposed for a multipath environment in OFDM-based cellular systems. Performances of the proposed methods(Method1 and Method2) are evaluated by computer simulation with the standard profile of IEEE 802.16e.

Self-Interference Cancellation-Aided Relay Beamforming for Multi-Way Relaying Systems (다중방향 릴레이 시스템을 위한 자가간섭 소거 보조 릴레이 빔형성 기법)

  • Le, Anh Duc;Park, Jin Bae;Cho, Yong Ok;Jeong, Min A;Lee, Seong Ro;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.378-386
    • /
    • 2013
  • In this paper, we propose a multi-way relaying system, in which N communicating nodes interchange their information one another by the help of a multiple-antenna non-regenerative relay station (RS). While the conventional multi-way relaying requires 2N transmission phases to complete the data exchange, the proposed system completes the mission with N phases composed of one multiple access phase and N-1 broadcast phases. For effective broadcast transmission, the proposed system pairs users for signal transmission with a new RS beamforming matrix not to interfere with the nodes of different pairs and a self-interference canceler at each node. The performance evaluation in terms of the average sum rate shows that the proposed system outperforms the conventional one with more significant gain when the number of RS antennas is comparable to the number of communicating nodes. The proposed schemes can be applicable to marine communications where the ships need to share their information with extended coverage.

Zero-forcing Beamforming for Hybrid Relaying (Hybrid Relaying을 위한 Zero-forcing Beamforming 기법)

  • Park, Jong-Rok;Ham, Sung-Jun;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.251-252
    • /
    • 2008
  • Throughput and quality-of-service (QoS) over multi-cell environments are two of the most challenging issues that must be addressed when developing next generation wireless network standards. Currently, multiple-input/multiple-output (MIMO), inter-cell coordination and multi-hop relay technologies are viable options for improving channel capacity or coverage extension. Nevertheless, severe QoS degradation occurs in the outer region of multi-cells due to significant interference from neighboring cells or relay stations, thereby limiting overall performance. Therefore, we propose a scheme which adapted to hybrid relaying.

  • PDF

Energy-Efficient Antenna Selection in Green MIMO Relaying Communication Systems

  • Qian, Kun;Wang, Wen-Qin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2016
  • In existing literature on multiple-input multiple-output (MIMO) relaying communication systems, antenna selection is often implemented by maximizing the channel capacity or the output single-to-noise ratio (SNR). In this paper, we propose an energy-efficient low-complexity antenna selection scheme for MIMO relaying communication systems. The proposed algorithm is based on beamforming and maximizing the Frobenius norm to jointly optimize the transmit power, number of active antennas, and antenna subsets at the source, relaying and destination. We maximize the energy efficiency between the link of source to relay and the link of relay to destination to obtain the maximum energy efficiency of the system, subject to the SNR constraint. Compared to existing antenna selection methods forMIMO relaying communication systems, simulation results demonstrate that the proposed method can save more power in term of energy efficiency, while having lower computational complexity.

Increasing Secrecy Capacity via Joint Design of Cooperative Beamforming and Jamming

  • Guan, Xinrong;Cai, Yueming;Yang, Weiwei;Cheng, Yunpeng;Hu, Junquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1041-1062
    • /
    • 2012
  • In this paper, we propose a hybrid cooperative scheme to improve the secrecy rate for a cooperative network in presence of multiple relays. Each relay node transmits the mixed signal consisting of weighted source signal and intentional noise. The problem of power allocation, the joint design of beamforming and jamming weights are investigated, and an iterative scheme is proposed. It is demonstrated by the numerical results that the proposed hybrid scheme further improves secrecy rate, as compared to traditional cooperative schemes.

The Solution for Cooperative Beamforming Design in MIMO Multi-way Relay Networks

  • Wang, Yong;Wu, Hao;Tang, Liyang;Li, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.956-970
    • /
    • 2015
  • In this paper, we study the design of network coding for the generalized transmit scheme in multiple input multiple output Y channel, where K users wish to exchange specified and shared information with each other within two slots. Signal space alignment at each user and the relay is carefully constructed to ensure that the signals from the same user pair are grouped together. The cross-pair interference can be canceled during both multiple accessing channel phase and broadcasting channel phase. The proposed signal processing scheme achieves the degrees of freedom of ${\eta}(K)=K^2$ with fewer user antennas.