• Title/Summary/Keyword: Relaxed stress zone

Search Result 5, Processing Time 0.017 seconds

A Study on the Estimation of Stress Relaxed Zone around a Tunnel Periphery for the Design of 2-Arch Tunnel Lining (2-ARCH 터널의 라이닝 설계를 위한 터널굴착주변 응력이완 영역산정에 관한 연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.343-352
    • /
    • 2005
  • In this study, the existing methods proposed to estimate the relaxed load due to a tunnel excavation are compared and analyzed. Also a new approach, by which the stress relaxed zone around an excavated tunnel periphery can be systematically estimated, was suggested for the design of 2-arch tunnel lining. To this end, local factors of safety are calculated from the redistributed stresses after the excavation of a tunnel. The height of the relaxed load is inferred based on the assumption that the stress relaxed zone might coincide with the region corresponding to the local safety factor of 2.0 or 3.0. The new approach proposed in this study has the advantage of estimating the height of the relaxed load independent of the shape of a tunnel and the ground conditions, Since the height of the relaxed load is estimated according to the local factor of safety, which is a relatively clear criterion, the designer's subjectivity involved in the design of concrete tunnel lining might be reduced.

  • PDF

Analysis of Deformation Behavior of Underground Caverns in a Discontinuous Rock Mass Using the Distinct Element Method (개별요소법을 이용한 불연속 암반내 지하공동의 변형 거동 해석)

  • Jung, Wan-Kyo;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.69-81
    • /
    • 2003
  • Numerical analysis is important for the design, construction and maintenance of large caverns. The rock mass contains generally discontinuities such as faults, joints and fissures. The mechanical behavior and geometric characteristics of these discontinuities would have a significant impact on the stability of the caverns. In this research the Distinct Element Method(DEM) was used to analyze the structural stability of the large cavern. The Barton-Bandis Joint Model (B-B J.M) was used as a constitutive model for the joint. In addition, two different cases 1) analysis with a support system and 2) analysis with no support system, were analyzed to optimize a support system and to investigate reinforcing effects of a support system. The most significant parameters of in-situ stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. Displacement (horizontal, joint shear), maximum joint opening, maximum and minimum principal stresses, range of relaxed zone, rockbolt axial forces and shotcrete stresses were calculated at each excavation stage. As a result of analysis the calculated values proved to be under the allowable value Rockbolts also proved to be an efficient support measure to control joint shear displacement which had significant effects on extending the relaxed zone. As a consequence, the structural stability of the cavern was assured with an appropriate support system.

  • PDF

Effects of the borehole drainage for roof aquifer on local stress in underground mining

  • Shao, Jianli;Zhang, Qi;Zhang, Wenquan;Wang, Zaiyong;Wu, Xintao
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.479-490
    • /
    • 2021
  • Pre-drainage of groundwater in the roof aquifer by boreholes is the main method for prevention of roof water disaster, and the drop in the water level during the drainage leads to the variation of the local stress in the overlying strata. Based on a multitude of boreholes for groundwater drainage from aquifer above the 1303 mining face of Longyun Coal Mine, theoretical analysis and numerical simulation are used to investigate the local stress variation in the process of borehole drainage. The results show that due to the drop in the water level of the roof aquifer during the drainage, the stress around the borehole gradually evolved. From the center of the borehole to the outside, a stress-relaxed zone, a stress-elevated zone, and a stress-recovered zone are sequentially formed. Along with the expansion of drainage influence, the stress peak in the stress-elevated zone also moves to the outside. When the radius of influence develops to the maximum, the stress peak position no longer moves outward. When the coal mining face advances to the drainage influence range, the abutment pressure in front of the mining face is superimposed with the high local stress around the borehole, which increases the risk of stress concentration. The present study provides a reference for the stress concentration caused by borehole drainage, which can be potentially utilized in the optimal arrangement of drainage boreholes in underground mining.

Stress Analysis Acting on Electric Pole using Strain Gauge from Full Scale Pull-Out Test (실물인장실험시 변형률계를 이용한 전주에 작용하는 응력분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.49-55
    • /
    • 2010
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find stresses acting on concrete electric poles. The stresses of concrete poles are relaxed at 600~700[kg] of tensile load, and stresses are concentrated at top of pole, and spread to lower part of pole. In the concrete pole collapse test, tensile load at failure was approximately 1,400[kg], which is twice of design load. As passive zone in the soil increases, the stresses acting on concrete pole are concentrated at lower part of pole based on moment arm earth pressure distribution.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF