• Title/Summary/Keyword: Relaxed strain

Search Result 51, Processing Time 0.023 seconds

Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint (용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

Real-Time Observation of Temperature-Dependen Strain in Poly (3-hexylthiophene) Crystals in a Mixed Donor and Acceptor Thin Film

  • Lee, Hyeon-Hwi;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.163-163
    • /
    • 2012
  • We observed strain evolution of P3HT crystals in P3HT:PCBM films and the effect of Al electrode on the evolution during real time annealing process. Based on simple assumptions, both relaxed lattice parameters and thermal expansion coefficient could be quantitatively determined. P3HT:PCBM films displayed tensile strain in as-prepared samples regardless of the presence of an Al layer. In the absence of Al layer, P3HT crystals showed only strain relaxation at an annealing temperature of $180^{\circ}C$. Meanwhile In the presence of an Al layer, the strain was relaxed and changed to compressive strain at around 120C annealing temperature, which indicated a tightening of the thiophene ring packing. These behaviors support the improved performance of devices fabricated by post annealing process.

  • PDF

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress (Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구)

  • Hong, Sang-Hyuk;Hong, Chun-Hyi;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

Strain conservation in implantation -doped GeSi layers on Si(100)

  • Im, S.;Nicolet, M.A.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.47-52
    • /
    • 1997
  • Metastable pseudomorphic GeSi layers grown by vapor phase epitaxy on Si(100) substrates were implanted at room temperature. The implantations were performed with 90 KeV As ions to a dose of $1\times 10^{13}\;\textrm{cm}^2$ for $Ge_{0.08}Si_{0.92}$ layers and 709 keV $BF_2^+$ ions to a dose of $3\times 10^{13}\;\textrm{cm}^2$ for $Ge_{0.06}Si_{0.94}$layers. The samples were subsequently annealed for short 10-40 s durations in a lamp furnace with a nitrogen ambient or for a long 30 min period in a vacuum tube furnace. For $Ge_{0.08}Si_{0.92}$samples annealed for a 30 min-longt duration at $700^{\circ}C$ the dopant activation can only reach 50% without introducing significant strain relaxaion whereas samples annealed for short 40s periods (at $850^{\circ}C$) can achieve more than 90% activation without a loss of strain, For $Ge_{0.06}Si_{0.94}$samples annealed for either 40s or 30min at $800^{\circ}C$ full electrical activation of the boron is exhibited in the GeSi epilayer without losing their strain. However when annealed at $900^{\circ}C$ the strain in both implanted and unimplanted layers is partly relaxed after 30min whereas it is not visibly relaxed after 40s.

  • PDF

Fatigue Life Estimation of Welding Details by Using a Notch Strain Approach (노치변형률법을 적용한 용접구조상세의 피로수명평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.977-985
    • /
    • 2004
  • An evaluation of fatigue life of welded components is complicated due to various geometrically complex welding details and stress raisers in vicinity of weld beads, ego under cuts, overlaps and blow holes. These factors have a considerable influence on the fatigue strength of welded joints, as well as the welding residual stress which is relaxed depending on the distribution of local stress at the front of the stress raisers. To reasonably evaluate fatigue life, the effect of geometries and welding residual stress should be taken into account. The several methods based on the notch strain approach have been proposed in order to accomplish this. These methods, however, result in differences between analytical and experimental results due to discrepancies in estimated amount of relaxed welding residual stress present. In this paper, an approach that involves the use of a modified notch strain approach considering geometrical effects and a residual stress relaxation model based on experimental results was proposed. The fatigue life for five types of representative welding details, ego cruciform, cover plate, longitudinal stiffener, gusset and side attachment joint, are evaluated using this method.

Impact of Strain Effects on Hole Mobility and Effective Mass in the p-Channel Nanowire Cross-Section

  • Jang, Geon-Tae
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.424-427
    • /
    • 2017
  • This study investigated the effect of strain on hole mobility and hole effective mass in a p-channel rectangular nanowire with two-dimensional confinement. We obtained the valence energy band structure using the six-band k.p method and calculated the mobility and effective mass of the hole in the [100] direction taking the strain effect into account in the inversion region. The hole mobility of strained silicon was calculated using Kubo-Greenwood formalism. As a result, it showed good performance compared to relaxed silicon, but its magnitude was insignificant.

  • PDF

The density-of-states effective mass and conductivity effective mass of electrons and holes in relaxed or strained Ge and ${Ge_{0.8}}{Sn_{0.2}}$ (완화된 또는 응력변형을 겪는 Ge과 ${Ge_{0.8}}{Sn_{0.2}}$에서 전자와 정공의 상태밀도 유효질량과 전도도 유효질량)

  • 박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.643-650
    • /
    • 2000
  • Density-of-states effective mass(m*$_{d}$) and conductivity mass(m*$_{c}$)for Ge and Ge$_{0.8}$/Sn$_{0.2}$ are obtained by using 8$\times$8 k.p and strain Hamiltonians. It is shown that m*$_{d}$ and m*$_{c}$ for electrons in Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) and Ge$_{0.8}$/Sn$_{0.2}$/Ge(001) are much smaller than those for electrons in relaxed Ge mainly due to the increase of interaction caused by the strain between the conduction band and valence bands at the $\Gamma$ point. The lift of degeneracy in Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) and Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) makes m*$_{d}$ and m*$_{c}$ for holes smaller than those in relaxed Ge and results in the decrease of the interband scattering as well as interband scattering. The decrease of the interband scattering is more obvious in Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) because of its large splitting energy between the heavy hole and light hole band. Therefore, Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) is expected to be good candidate for the development of ultra high-speed CMOS device.CMOS device.eed CMOS device.CMOS device.

  • PDF

Measurement of Tensile Relaxation of Leather for Shoe Uppers (구두 상부용 가죽의 인장 회복량 측정실험)

  • Lee, Jeongmin;Bae, Mincheol;Kim, Yungwoo;Choi, Seongmyung;Baek, Sungkwan;Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.7-10
    • /
    • 2017
  • In general, the shoe stretcher is utilized to stretching the leather of shoe upper in the longitudinal direction. In the capstone design class, we tried to make a shoe leather stretcher for the ball of foot. Since a natural cow leather was recovered in length according to relaxation time after stretched, it was difficult to predict the initial amount of set up of stretching. In this paper, tensile and relaxation experiments were conducted in order to predict the amount of initial stretching for appropriate tensile length. Apparatus of leather stretching was designed and strains of leather were measured according to relaxation times of 12, 18, 24 hours after stretching of 24 hours. It was revealed that the ratio of the final relaxed strain and the initial applied strain was about 0.404 with R-square of 0.990 for a shoe cow leather.

On the Role of Kinematic Hardening Rules in Predicting Relaxation Behavior (응력이완 거동의 예측에 대한 이동경화법칙의 역할)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2008
  • Numerous experimental investigations on metallic materials and solid polymers have shown that relaxation behavior is nonlinearly dependent on prior strain rate. The stress drops in a constant time interval nonlinearly increase with an increase of prior strain rate. And the relaxed stress associated with the fastest prior strain rate has the smallest stress magnitude at the end of relaxation periods. This paper deals with the performance of three classes of unified constitutive models in predicting the characteristic behaviors of relaxation. The three classes of models are categorized by a rate sensitivity of kinematic hardening rule. The first class uses rate-independent kinematic hardening rule that includes the competing effect of strain hardening and dynamic recovery. In the second class, a stress rate term is incorporated into the rate-independent kinematic hardening rule. The final one uses a rate-dependent format of kinematic hardening rule.