• 제목/요약/키워드: Relaxation time effect

검색결과 268건 처리시간 0.026초

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.495-502
    • /
    • 2023
  • In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.

이완요법이 불안과 혈압에 미치는 효과에 대한 메타분석 (A Meta-Analysis of Effects of Relaxation Therapy on Anxiety and Blood Pressure)

  • 김희승;송혜향;최소은
    • 대한간호학회지
    • /
    • 제30권2호
    • /
    • pp.282-292
    • /
    • 2000
  • A meta-analysis of 14 quasi-experimental studies was conducted to compare the effect of size on various relaxation therapies applied to patients and health volunteer students. These studies were selected from theses, dissertations and papers that have been done between 1982 to 1993. Also They have a randomized or nonequivalent control group in a pre test-post test design. The studies were evaluated in different ways; 1) types of relaxation therapy, 2) total amount of time of relaxation therapy, and 3) types of outcome variables. For a group of homogenious studies, the weighted mean effect size and standard error were estimated. Some findings are summarized as follows : 1. Jacobson relaxation therapy had a larger effect on systolic and diastolic blood pressures than on state anxiety. 2. For the total time of relaxation therapy, (longer than 60 minutes) had a much larger effect in decreasing systolic and diastolic blood pressures than in the case of a time period shorter than 60 minutes. 3. Relaxation therapy applied to surgery patients also had a larger effect in decreasing state anxiety than when applied to other patients.

  • PDF

최대하 운동부하가 혈액성분변화에 미치는 영향 (The Effect of a Submaximal Exercise Load on the Change in Blood Components.)

  • 이충훈
    • 보건교육건강증진학회지
    • /
    • 제14권1호
    • /
    • pp.173-182
    • /
    • 1997
  • This study presents the results observed in the change in blood components of ten female students of “K” university's physical Education Department during submaximal exercise, relaxation and recovery periods. 1. After ecercise, the WBC value is higher than in relaxation time. Also within thirty minutes of the relaxation period it does not return to the normal range. 2. After exercise, the RBC value is higher than during relaxation time. Also in the recovery period, within 30 minutes it returns to the normal range. 3. After exercise. the RCT value is higher than during relaxation time. Also in the 30 minutes recovery period it returns to the normal range of relaxation. 4. After exercise, the Hb value is higher than during relaxation time. It rises slowly after exercise and returns to the relaxation range in the 30 minutes recovery period. 5. After exercise and in 10 minutes of the recovery period, the value of Glucose is lower than during relaxation time. It returns to the relaxation range in 30 minutes of the recovery period. 6. After exercise the value of protein is higher than during relaxation time. It returns to the relaxation range within ten to thirty minutes of the recovery period.

  • PDF

Debye Screening Effect on Scaling Behavior of Longest Relaxation Time of Biological Polyelectrolyte Chain

  • Lee, Jeong Yong;Sung, Jung Mun;Yoon, Kyu;Chun, Myung-Suk;Jung, Hyun Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3703-3708
    • /
    • 2013
  • The scaling relationship of the longest relaxation time of a single chain of semiflexible biological polyelectrolyte has been investigated by performing well-established coarse-grained Brownian dynamics simulations. Two kinds of longest relaxation times were estimated from time-sequences of chain trajectories, and their behaviors were interpreted by applying the scaling law for different molecular weights of polyelectrolyte and Debye lengths. The scaling exponents for longest stress relaxation and rotational relaxation are found in the ranges of 1.67-1.79 and 1.65-1.81, respectively, depending on the physicochemical interaction of electrostatic Debye screening. The scaling exponent increases with decreasing screening effect, which is a special feature of polyelectrolytes differing from neutral polymers. It revealed that the weak screening allows a polyelectrolyte chain to follow the behavior in good solvent due to the strong electrostatic repulsion between beads.

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.

Effect of relaxation time on generalized double porosity thermoelastic medium with diffusion

  • Mohamed I.A. Othman;Nehal T. Mansour
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.475-482
    • /
    • 2023
  • This paper studies the effect of the relaxation time on a two-dimensional thermoelastic medium which has a doubly porous structure in the presence of diffusion and gravity. The normal mode analysis is used to obtain the analytic expressions of the physical quantities, which we take the solution form in the exponential image. We have discussed a homogeneous thermoelastic half-space with double porosity with the effect of diffusion and gravity. The equations of generalized thermoelastic material with double porosity structure with one relaxation time have been developed. Moreover, the expressions of many physical quantities are explained. The general solutions, under specific boundary conditions of the problem, were found in some detail. In addition, numerical results are computed.

Development of automatic system for evaluating the stress redistribution in structural members of a steel cable-stayed bridge due to cable stress relaxation

  • Hong, Tien-Thang;Kim, Jung J.;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.753-768
    • /
    • 2022
  • In this study, a graphical automatic system is developed in order to investigate the stress redistribution of structural members in a steel cable-stayed bridge. The generalized Maxwell model is selected for stress relaxation estimation, and it is carefully verified and applied to all the cable members of a steel cable-stayed bridge to investigate its stress relaxation. A set of stress relaxation parameters in all cables is determined using the fmincon optimization function. The stress redistribution of the steel cable-stayed bridge is then analyzed using ABAQUS. To shorten the investigation time, all the aforementioned phases are built up to be an automatic system. The automatic system is then employed to investigate the effect of cable cross-section areas and girder spans on stress redistribution. The findings from these studies show that the initial tension in the cables of a steel cable-stayed bridge should be kept to less than 55% of the cable's ultimate strength to reduce the effect of cable stress relaxation. The cable space in a steel cable-stayed bridge should be limited to 15,000 mm to minimize the effect of cable stress relaxation. In comparison to other structural members of a steel cable-stayed bridge, the girders experience a significant stress redistribution.

GaAs 벌크에서 전자의 과도 전송 특성 (A study on the transient electron transport in GaAs bulk)

  • 임행삼;황의성;심재훈;이정일;홍순석
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.268-273
    • /
    • 1997
  • In this paper the transient electron transport in GaAs bulk is simulated by using ensemble Monte Carlo method. To analyze the transient electron transport the 10000 electrons in the .GAMMA. valley are simulated simultaneously for 10 picoseconds. The electric field-velocity relation is obtained. The high impurity density reduces the negative differential resistance effect. The result of transient average velocity shows the electron velocity in the transient state is faster than that in the steady state. This transient velocity overshoot is caused by the intervalley scattering mechanism. And we confirmed the fact that the energy relaxation time is longer than the momentum relaxation time.

  • PDF

Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse

  • Abbas, Ibrahim A.;Alzahrani, Faris S.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.791-803
    • /
    • 2016
  • In this article, the problem of a two-dimensional thermoelastic half-space are studied using mathematical methods under the purview of the generalized thermoelastic theory with one relaxation time is studied. The surface of the half-space is taken to be thermally insulated and traction free. Accordingly, the variations of physical quantities due to by laser pulse given by the heat input. The nonhomogeneous governing equations have been written in the form of a vector-matrix differential equation, which is then solved by the eigenvalue approach. The analytical solutions are obtained for the temperature, the components of displacement and stresses. The resulting quantities are depicted graphically for different values of thermal relaxation time. The result provides a motivation to investigate the effect of the thermal relaxation time on the physical quantities.

3.0T MRI에서 온도변화가 T1 및 T2 이완시간에 미치는 영향 (Effect of Temperature on T1 and T2 Relaxation Time in 3.0T MRI)

  • 김호현;권순용;임우택;강충환;김경수;김순배;백문영
    • 대한디지털의료영상학회논문지
    • /
    • 제15권2호
    • /
    • pp.63-68
    • /
    • 2013
  • Purpose : The relaxation times of tissue in MRI depend on strength of magnetic field, morphology of nuclear, viscosity, size of molecules and temperature. This study intended to analyze quantitatively that materials' temperatures have effects on T1 and T2 relaxation times without changing of other conditions. Materials and Methods : The equipment was used MAGNETOM SKYRA of 3.0T(SIEMENS, Erlagen, Germany), 32 channel spine coil and Gd-DTPA water concentration phantom. To find out T1 relaxation time, Inversion Recovery Spin Echo sequences were used at 50, 400, 1100, 2500 ms of TI. To find out T2 relaxation time, Multi Echo Spin Echo sequences were used at 30, 60, 90, 120, 150, 180, 210, 240, 270 ms of TE. This experiment was scanned with 5 steps from 25 to $45^{\circ}C$. next, using MRmap(Messroghli, BMC Medical Imaging, 2012) T1 and T2 relaxation times were mapped. on the Piview STAR v5.0(Infinitt, Seoul, Korea) 5 steps were measured as the same ROI, and then mean values were calculated. Correlation between the temperatures and relaxation times were analyzed by SPSS(version 17.0, Chicago, IL, USA). Results : According to increase of temperatures, T1 relaxation times were $214.39{\pm}0.25$, $236.02{\pm}0.87$, $267.47{\pm}0.48$, $299.44{\pm}0.64$, $330.19{\pm}1.72$ ms. T2 relaxation times were $180.17{\pm}0.27$, $197.17{\pm}0.44$, $217.92{\pm}0.39$, $239.89{\pm}0.53$, $257.40{\pm}1.77$ ms. With the correlation analysis, the correlation coefficients of T1 and T2 relaxation times were statistically significant at 0.998 and 0.999 (p< 0.05). Conclusion : T1 and T2 relaxation times are increased as temperature of tissue goes up. In conclusion, we suggest to recognize errors of relaxation time caused local temperature's differences, and consider external factors as well in the quantitative analysis of relaxation time or clinical tests.

  • PDF