• Title/Summary/Keyword: Relative value

Search Result 2,896, Processing Time 0.029 seconds

Agronomic Characteristics and Productivity of Winter Forage Crop in Sihwa Reclaimed Field (시화 간척지에서 월동 사료작물의 초종 및 품종에 따른 생육특성 및 생산성)

  • Kim, Jong Geun;Wei, Sheng Nan;Li, Yan Fen;Kim, Hak Jin;Kim, Meing Joong;Cheong, Eun Chan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study was conducted to compare the agronomic characteristics and productivity according to the species and varieties of winter forage crops in reclaimed land. Winter forage crops used in this study were developed in National Institute of Crop Science, RDA. Oats ('Samhan', 'Jopung', 'Taehan', 'Dakyung' and 'Hi-early'), forage barley ('Yeongyang', 'Yuyeon', 'Yujin', 'Dacheng' and 'Yeonho'), rye ('Gogu', 'Jogreen' and 'Daegokgreen') and triticale ('Shinyoung', 'Saeyoung', 'Choyoung', 'Sinseong', 'Minpung' and 'Gwangyoung') were planted in the reclaimed land of Sihwa district in Hwaseong, Gyeonggi-do in the autumn of 2018 and cultivated using each standard cultivation method, and harvested in May 2019(oat and rye: 8 May, barley and triticale: 20 May.) The emergency rate was the lowest in rye (84.4%), and forage barley, oat and triticale were in similar levels (92.8 to 98.8%). Triticale was the lowest (416 tiller/㎡) and oat was the highest (603 tiller/㎡) in tiller number. Rye was the earliest in the heading date (April 21), triticale was April 26, and oat and forage barley were in early May (May 2 and May 5). The plant height was the highest in rye (95.6 cm), and triticale and forage barley was similar (76.3 and 68.3cm) and oat was the lowest (54.2 cm). Dry matter(DM) content of rye was the highest in the average of 46.04% and the others were similar at 35.09~37.54%. Productivity was different among species and varieties, with the highest dry matter yield of forage barley (4,344 kg/ha), oat was similar to barley, and rye and triticale were lowest. 'Dakyoung' and 'Hi-early' were higher in DM yield (4,283 and 5,490 kg/ha), and forage barley were higher in 'Yeonho', 'Yujin' and 'Dacheng' varieties (4,888, 5,433 and 5,582 kg/ha). Crude protein content of oat (6.58%) tended to be the highest, and TDN(total digectible nutrient) content (63.61%) was higher than other varieties. In the RFV(relative feed value), oats averaged 119, while the other three species averaged 92~105. The weight of 1,000 grain was the highest in triticale (43.03 g) and the lowest in rye (31.61 g). In the evaluation of germination rate according to the salt concentration (salinity), the germination rate was maintained at about 80% from 0.2 to 0.4% salinity. The correlation coefficient between germination and salt concentration was high in oat and barley (-0.91 and -0.92) and lowest in rye (-0.66). In conclusion, forage barley and oats showed good productivity in reclaimed land. Adaptability is also different among varieties of forage crops. When growing forage crops in reclaimed land, the selection of highly adaptable species and varieties was recommended.

Structure of Export Competition between Asian NIEs and Japan in the U.S. Import Market and Exchange Rate Effects (한국(韓國)의 아시아신흥공업국(新興工業國) 및 일본(日本)과의 대미수출경쟁(對美輸出競爭) : 환율효과(換率效果)를 중심(中心)으로)

  • Jwa, Sung-hee
    • KDI Journal of Economic Policy
    • /
    • v.12 no.2
    • /
    • pp.3-49
    • /
    • 1990
  • This paper analyzes U.S. demand for imports from Asian NIEs and Japan, utilizing the Almost Ideal Demand System (AIDS) developed by Deaton and Muellbauer, with an emphasis on the effect of changes in the exchange rate. The empirical model assumes a two-stage budgeting process in which the first stage represents the allocation of total U.S. demand among three groups: the Asian NIEs and Japan, six Western developed countries, and the U.S. domestic non-tradables and import competing sector. The second stage represents the allocation of total U.S. imports from the Asian NIEs and Japan among them, by country. According to the AIDS model, the share equation for the Asia NIEs and Japan in U.S. nominal GNP is estimated as a single equation for the first stage. The share equations for those five countries in total U.S. imports are estimated as a system with the general demand restrictions of homogeneity, symmetry and adding-up, together with polynomially distributed lag restrictions. The negativity condition is also satisfied for all cases. The overall results of these complicated estimations, using quarterly data from the first quarter of 1972 to the fourth quarter of 1989, are quite promising in terms of the significance of individual estimators and other statistics. The conclusions drawn from the estimation results and the derived demand elasticities can be summarized as follows: First, the exports of each Asian NIE to the U.S. are competitive with (substitutes for) Japan's exports, while complementary to the exports of fellow NIEs, with the exception of the competitive relation between Hong Kong and Singapore. Second, the exports of each Asian NIE and of Japan to the U.S. are competitive with those of Western developed countries' to the U.S, while they are complementary to the U.S.' non-tradables and import-competing sector. Third, as far as both the first and second stages of budgeting are coneidered, the imports from each Asian NIE and Japan are luxuries in total U.S. consumption. However, when only the second budgeting stage is considered, the imports from Japan and Singapore are luxuries in U.S. imports from the NIEs and Japan, while those of Korea, Taiwan and Hong Kong are necessities. Fourth, the above results may be evidenced more concretely in their implied exchange rate effects. It appears that, in general, a change in the yen-dollar exchange rate will have at least as great an impact, on an NIE's share and volume of exports to the U.S. though in the opposite direction, as a change in the exchange rate of the NIE's own currency $vis-{\grave{a}}-vis$ the dollar. Asian NIEs, therefore, should counteract yen-dollar movements in order to stabilize their exports to the U.S.. More specifically, Korea should depreciate the value of the won relative to the dollar by approximately the same proportion as the depreciation rate of the yen $vis-{\grave{a}}-vis$ the dollar, in order to maintain the volume of Korean exports to the U.S.. In the worst case scenario, Korea should devalue the won by three times the maguitude of the yen's depreciation rate, in order to keep market share in the aforementioned five countries' total exports to the U.S.. Finally, this study provides additional information which may support empirical findings on the competitive relations among the Asian NIEs and Japan. The correlation matrices among the strutures of those five countries' exports to the U.S.. during the 1970s and 1980s were estimated, with the export structure constructed as the shares of each of the 29 industrial sectors' exports as defined by the 3 digit KSIC in total exports to the U.S. from each individual country. In general, the correlation between each of the four Asian NIEs and Japan, and that between Hong Kong and Singapore, are all far below .5, while the ones among the Asian NIEs themselves (except for the one between Hong Kong and Singapore) all greatly exceed .5. If there exists a tendency on the part of the U.S. to import goods in each specific sector from different countries in a relatively constant proportion, the export structures of those countries will probably exhibit a high correlation. To take this hypothesis to the extreme, if the U.S. maintained an absolutely fixed ratio between its imports from any two countries for each of the 29 sectors, the correlation between the export structures of these two countries would be perfect. Therefore, since any two goods purchased in a fixed proportion could be classified as close complements, a high correlation between export structures will imply a complementary relationship between them. Conversely, low correlation would imply a competitive relationship. According to this interpretation, the pattern formed by the correlation coefficients among the five countries' export structures to the U.S. are consistent with the empirical findings of the regression analysis.

  • PDF

Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia (지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석)

  • Park, Hyun-Jung;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.19-43
    • /
    • 2014
  • The Pareto principle, also known as the 80-20 rule, states that roughly 80% of the effects come from 20% of the causes for many events including natural phenomena. It has been recognized as a golden rule in business with a wide application of such discovery like 20 percent of customers resulting in 80 percent of total sales. On the other hand, the Long Tail theory, pointing out that "the trivial many" produces more value than "the vital few," has gained popularity in recent times with a tremendous reduction of distribution and inventory costs through the development of ICT(Information and Communication Technology). This study started with a view to illuminating how these two primary business paradigms-Pareto principle and Long Tail theory-relates to the success of virtual knowledge collaboration. The importance of virtual knowledge collaboration is soaring in this era of globalization and virtualization transcending geographical and temporal constraints. Many previous studies on knowledge sharing have focused on the factors to affect knowledge sharing, seeking to boost individual knowledge sharing and resolve the social dilemma caused from the fact that rational individuals are likely to rather consume than contribute knowledge. Knowledge collaboration can be defined as the creation of knowledge by not only sharing knowledge, but also by transforming and integrating such knowledge. In this perspective of knowledge collaboration, the relative distribution of knowledge sharing among participants can count as much as the absolute amounts of individual knowledge sharing. In particular, whether the more contribution of the upper 20 percent of participants in knowledge sharing will enhance the efficiency of overall knowledge collaboration is an issue of interest. This study deals with the effect of this sort of knowledge sharing distribution on the efficiency of knowledge collaboration and is extended to reflect the work characteristics. All analyses were conducted based on actual data instead of self-reported questionnaire surveys. More specifically, we analyzed the collaborative behaviors of editors of 2,978 English Wikipedia featured articles, which are the best quality grade of articles in English Wikipedia. We adopted Pareto ratio, the ratio of the number of knowledge contribution of the upper 20 percent of participants to the total number of knowledge contribution made by the total participants of an article group, to examine the effect of Pareto principle. In addition, Gini coefficient, which represents the inequality of income among a group of people, was applied to reveal the effect of inequality of knowledge contribution. Hypotheses were set up based on the assumption that the higher ratio of knowledge contribution by more highly motivated participants will lead to the higher collaboration efficiency, but if the ratio gets too high, the collaboration efficiency will be exacerbated because overall informational diversity is threatened and knowledge contribution of less motivated participants is intimidated. Cox regression models were formulated for each of the focal variables-Pareto ratio and Gini coefficient-with seven control variables such as the number of editors involved in an article, the average time length between successive edits of an article, the number of sections a featured article has, etc. The dependent variable of the Cox models is the time spent from article initiation to promotion to the featured article level, indicating the efficiency of knowledge collaboration. To examine whether the effects of the focal variables vary depending on the characteristics of a group task, we classified 2,978 featured articles into two categories: Academic and Non-academic. Academic articles refer to at least one paper published at an SCI, SSCI, A&HCI, or SCIE journal. We assumed that academic articles are more complex, entail more information processing and problem solving, and thus require more skill variety and expertise. The analysis results indicate the followings; First, Pareto ratio and inequality of knowledge sharing relates in a curvilinear fashion to the collaboration efficiency in an online community, promoting it to an optimal point and undermining it thereafter. Second, the curvilinear effect of Pareto ratio and inequality of knowledge sharing on the collaboration efficiency is more sensitive with a more academic task in an online community.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Optimum Radiotherapy Schedule for Uterine Cervical Cancer based-on the Detailed Information of Dose Fractionation and Radiotherapy Technique (처방선량 및 치료기법별 치료성적 분석 결과에 기반한 자궁경부암 환자의 최적 방사선치료 스케줄)

  • Cho, Jae-Ho;Kim, Hyun-Chang;Suh, Chang-Ok;Lee, Chang-Geol;Keum, Ki-Chang;Cho, Nam-Hoon;Lee, Ik-Jae;Shim, Su-Jung;Suh, Yang-Kwon;Seong, Jinsil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.143-156
    • /
    • 2005
  • Background: The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. Materials and Methods: The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of $23.4\~59.4$ Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-IBT) was also peformed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of $14.4\~43.2$ Gy (Median 36.0) of EBRT in 495 patients, while In the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder & rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ($\alpha/\beta$=10) and late-responding tissues ($\alpha/\beta$=3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED $Gy_3$ and the risk of complication was assessed using serial multiple logistic regression models. The associations between R-BED $Gy_3$ and rectal complications and between V-BED $Gy_3$ and bladder complications were assessed using multiple logistic regression models after adjustment for age, stage, tumor size and treatment duration. Serial Coxs proportional hazard regression models were used to estimate the relative risks of recurrence due to MD-BED $Gy_{10}$, and the treatment duration. Results: The overall complication rate for RTOG Grades $1\~4$ toxicities was $33.1\%$. The 5-year actuarial pelvic control rate for ail 743 patients was $83\%$. The midline cumulative BED dose, which is the sum of external midline BED and HDR-ICBT point A BED, ranged from 62.0 to 121.9 $Gy_{10}$ (median 93.0) for tumors and from 93.6 to 187.3 $Gy_3$ (median 137.6) for late responding tissues. The median cumulative values of actual rectal (R-BED $Gy_3$) and bladder Point BED (V-BED $Gy_3$) were 118.7 $Gy_3$ (range $48.8\~265.2$) and 126.1 $Gy_3$ (range: $54.9\~267.5$), respectively. MD-BED $Gy_3$ showed a good correlation with rectal (p=0.003), but not with bladder complications (p=0.095). R-BED $Gy_3$ had a very strong association (p=<0.0001), and was more predictive of rectal complications than A-BED $Gy_3$. B-BED $Gy_3$ also showed significance in the prediction of bladder complications in a trend test (p=0.0298). No statistically significant dose-response relationship for pelvic control was observed. The Sandwich and Continuous techniques, which differ according to when the ICR was inserted during the EBRT and due to the physicians preference, showed no differences in the local control and complication rates; there were also no differences in the 3 vs. 5 Gy fraction size of HDR-ICBT. Conclusion: The main reasons optimal dose-fractionation guidelines are not easily established is due to the absence of a dose-response relationship for tumor control as a result of the high-dose gradient of HDR-ICBT, individual differences In tumor responses to radiation therapy and the complexity of affecting factors. Therefore, in our opinion, there is a necessity for individualized tailored therapy, along with general guidelines, in the definitive radiation treatment for cervix cancer. This study also demonstrated the strong predictive value of actual rectal and bladder reference dosing therefore, vaginal gauze packing might be very Important. To maintain the BED dose to less than the threshold resulting in complication, early midline shielding, the HDR-ICBT total dose and fractional dose reduction should be considered.