• Title/Summary/Keyword: Relative temperature

Search Result 3,812, Processing Time 0.046 seconds

A Comparative Functionality Evaluation of Paulownia Wood Storage Boxes and Acid-free Archival Boxes to Store the Annals of Joseon Dynasty - Indoor and Outdoor Temperature and Relative Humidity Controls, and Heat Release Rate -

  • Park, Hae Jin;Kim, Seong Eun;Lee, Jin Kyung;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.72-79
    • /
    • 2022
  • A paulownia wood has been widely used with various advantages as its low weight, permeability, convenient workability and aesthetic patterns for a long time. However, the related empirical researches and simultaneous evaluations of functionality are insufficient compared with acid-free archival boxes for now. In this study, the indoor and outdoor temperature and relative humidity control and heat release rate were evaluated under the controlled and uncontrolled circumstance in 2018. The paulownia wood storage box showed superior control effect of relative humidity than the acid-free archival box in constantly uncontrolled environment. Also, the possibility of the flame diffusion from the surface of the materials was higher for the paulownia materials, and the acid-free archival box showed more dangerous patterns in the early stages of the fire.

Negative Ion Generation Index according to Altitude in the Autumn of Pine Forest in Gyeongju Namsan (경주 남산 소나무림의 가을철 해발고도별 음이온 발생지수)

  • Kim, Jeong Ho;Yoon, Ji Hun;Lee, Sang Hoon;Choi, Won Jun;Yoon, Yong Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.4
    • /
    • pp.413-424
    • /
    • 2018
  • The study analyzed the effects of topographic structures and altitude in mountainous parks in Mt. Namsan in Gyeongju on the generation of anions. The temperature was at ridge ($9.82^{\circ}C$) > valley ($8.44^{\circ}C$), the relative humidity valley (59.01 %) > ridge (58.64 %), the solar radiation ridge ($34.40W/m^2$) > valley($14.69W/m^2$), the wind speed ridge (0.63m/s) > valley(0.37m/s), and the negative ion valley($636.81ea/cm^3$) > ridge($580.04ea/cm^3$). In the valley, the correlation with altitude was verified for the temperature, relative humidity, solar radiation, and negative ion generation in the valley. The relative humidity, solar radiation, and negative ion indicated a positive correlation while the temperature had a negative correlation. In the ridge, the correlation with altitude was verified for the temperature, relative humidity, wind speed, solar radiation, and negative ion generation. The relative humidity, solar radiation, and negative ion generation indicated a positive correlation while the temperature and wind speed had a negative correlation. The regression analysis showed the prediction equation of y=-0.006x+9.663 (x=altitude, y=temperature) in the valley and y=-0.009x+11.595 (x=altitude, y=temperature) in the ridge for the temperature, y=0.027x+53.561 (x=altitude, y=relative humidity) in the valley and y=0.008x+56.646 (x=altitude, y=relative humidity) in the ridges for the relative humidity, and y=0.027x+53.561 (x=altitude, y=negative Ion generation) in the valley and y= 0.008x+56.646 (x=altitude, y=negative Ion generation) in the ridge for the negative ion generation.

Modeling of wind and temperature effects on modal frequencies and analysis of relative strength of effect

  • Zhou, H.F.;Ni, Y.Q.;Ko, J.M.;Wong, K.Y.
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.35-50
    • /
    • 2008
  • Wind and temperature have been shown to be the critical sources causing changes in the modal properties of large-scale bridges. While the individual effects of wind and temperature on modal variability have been widely studied, the investigation about the effects of multiple environmental factors on structural modal properties was scarcely reported. This paper addresses the modeling of the simultaneous effects of wind and temperature on the modal frequencies of an instrumented cable-stayed bridge. Making use of the long-term monitoring data from anemometers, temperature sensors and accelerometers, a neural network model is formulated to correlate the modal frequency of each vibration mode with wind speed and temperature simultaneously. Research efforts have been made on enhancing the prediction capability of the neural network model through optimal selection of the number of hidden nodes and an analysis of relative strength of effect (RSE) for input reconstruction. The generalization performance of the formulated model is verified with a set of new testing data that have not been used in formulating the model. It is shown that using the significant components of wind speeds and temperatures rather than the whole measurement components as input to neural network can enhance the prediction capability. For the fundamental mode of the bridge investigated, wind and temperature together apply an overall negative action on the modal frequency, and the change in wind condition contributes less to the modal variability than the change in temperature.

An Experimental Study on Frost Generation Mechanism from Evaporator Tube in Air Conditioning System (공조용 열교환기 증발관에서의 서리 발생에 관한 메커니즘의 실험적 연구)

  • Park Sang-Kyun;Oh Cheal
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.113-117
    • /
    • 2006
  • The object qf this experiment was the evaluation of the growth rate of frost layer conditioned by inlet air's velocity, temperature and relative humidity on the copper tube in evaporator. In this experiment, the inlet air's velocity were $0.3^m/_s,\;0.6^m/_s,\;0.9^m/_s,$ temperature were $15^{\circ}C,\;20^{\circ}C,\;25^{\circ}C$ and the variation of relative humidity was $70\%~90\%$. And the brine temperature flowing through the copper tubes was kept $-15{\circ}C$ because generally cooling temperature range is constantly $-15^{\circ}C$ in the heat exchanger for air conditioning system It was found that the amount of frost generation increased so that the relative humidity, velocity and temperature of supply air increased.

Effects of Processing Temperature and Relative Humidities on the Sausage Cooking Time and Prediction Models of Cooking Time (공정온도와 상대습도가 소시지 쿠킹시간에 미치는 영향 및 쿠킹시간 예측모델)

  • Hur, Sang-Sun;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.325-331
    • /
    • 1990
  • The most important factors in the cooking process which is a main process in the sausage manufacture are cooking temperature and relative humidity. In order to design energy efficient processes in cooking, accurate data for the process parameters are necessary. Therefore, texture profiles were analysed and weight losses were measured at different process conditions of the forementioned factors and at different sizes of sausage, The prediction model for the sausage cooking time was then developed by the SPSS computer program The models were developed as a function of cooking temperature, relative humidity and the diameter of sausage by analyszing the scattergram. Then the model obtained could predict the values within 2.5% error. The higher temperature and relative humidity are the less changes of weight during sausage cooking. As the results of measuring physical properties, the values of hardness and cohesiveness at different temperatures and humidities were so much changed, while the values of elasticity and chewiness had little differences.

  • PDF

Heat Transfer Model for Soil Irradiated by Infrared (적외선 조사된 토양에 대한 열전달 모델)

  • 강화석;이귀현;강위수;오재헌
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 1996
  • The temperature distributions at various soil depths were predicted by heat transfer model during and after infrared irradiation on sand loam or loam soil. At each soil depth, predicted and measured temperature distributions were compared with using the mean relative percentage deviation and standard error. The mean relative percentage deviation was less than 10% between predicted and measured temperature distributions at each soil depth. Thus, it was concluded that the temperature distribution at each soil depth could be predicted satisfactorily by heat transfer model. Also, it is expected that these predicted temperature distributions can be used as basic information for determining the working speed of weeder and the size when the real weeder is constructed.

  • PDF

Finite Element Analysis and Experimental Investigation of Non-isothermal Foming Processes for Aluminum-Alloy Sheet Metals(Part 1. Experiment) (알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구 (제1부. 실험))

  • 류호연;김영은;김종호;구본영;금영탁
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.152-159
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5020-H32 for improving deep drawability. Experiments for producing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shapes. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5020-H32 sheet, whereas LDR of 2.25 in case of A1050-H16, could be obtained and the former was 1.4 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5020-H32 material was also about 1.92 times deeper than the depth drawn at room temperature. The effects of blank shape and forming temperature on drawability as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

Evaluation of Indoor Air Quality in the Railroad Electric Rolling Stock - Focused on Temperature and Humidity - (철도 전동차내의 실내공기질 평가 - 온도 및 습도를 중심으로 -)

  • Park Duck-Shin;Bae Sang-Ho;Jung Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.610-615
    • /
    • 2003
  • Electric rolling stock is one of major public transportation because of an increase in population and heavy traffic problems. The passengers under the influenced of indoor air quality such as air temperature, relative humidity and air velocity. Ventilation system on passenger cars should be designed for the health and comfort of the passengers. One of the main aim is to create an acceptable thermal environment without draught problems. The draught sensation increases when the air temperature decreases and the air velocity increases. Airflow in passenger cars is turbulent. Lateral temperature and humidity gradients in the electric rolling stock have been studied. And, the difference in the mean temperature and relative humidity measured at 0.7, 0.9, 1.2, 1.7 m above from the floor.

  • PDF

Evaluation of Indoor Thermal Environment and Thermal Sensation in Traditional Ondol Room (전통온돌방의 실내온열환경 및 온열감에 관한 연구)

  • 김난행;손장열
    • Journal of the Korean housing association
    • /
    • v.15 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • The aim of the research was to evaluate the characteristics of indoor thermal environment and thermal sensation in the traditional Ondol room. Indoor thermal factors including air temperature, operative temperature, floor surface temperature, relative humidity, PMV, OT were measured, and survey was carried out to understand subjective responses of resident's related to indoor thermal environment in Ondol room. The analysed houses are: the Chung hyo dang(the head house of Ryu family in Andong) and the Pyeung won jung(the traditional house in Yesan). The purpose of the survey was to know the relationship between resident's sensation and thermal environmental indicators such as air temperature, relative humidity, floor surface temperature, OT. The experimental results have pointed out how Ondol room may lead to comfortable and uniform indoor thermal environments.

A Study on Prediction of Temperature and Humidity for Estimation of Cooling Load (냉방부하 추정을 위한 온도와 습도 예측에 관한 연구)

  • Yoo, Seong-Yeon;Lee, Je-Myo;Han, Kyou-Hyun;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.394-402
    • /
    • 2007
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years from 2001 to 2005 at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.