• Title/Summary/Keyword: Relative ratio

Search Result 3,022, Processing Time 0.028 seconds

An Experimental Study of the Effect of Regeneration Area Ratio on the Performance of Small-Sized Dehumidification Rotor for Residential Usage (재생 면적비가 가정용 소형 제습로터의 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.277-282
    • /
    • 2015
  • During hot and humid weather, air-conditioners consume a large amount of electricity due to the large amount of latent heat. Simultaneous usage of a dehumidifier may reduce latent heat and reduce electricity consumption. In this study, dehumidification performance was measured for a small-sized dehumidification rotor made of inorganic fiber impregnated with metallic silicate within a constant temperature and humidity chamber. Regeneration to dehumidification depends on ratio, rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results demonstrate an optimum area ratio (1/2), rotor speed (1.0 rpm), and regeneration temperature ($100^{\circ}C$) to achieve a dehumidification rate of 0.0581 kg/s. As the area ratio increases, the optimum rotation speed and the optimum regeneration temperature also increase. Above the optimum rotor speed, incomplete regeneration reduces dehumidification. Above the optimum regeneration temperature, increased temperature variation between regeneration and dehumidification reduces dehumidification. Dehumidification rate also increases with an increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

Effects of Rear-Foot Wedged Insoles on the Foot Pressure in Walking (발 뒤축 내·외측 경사진 안창이 족부압력에 미치는 영향)

  • Ryu, Taebeum;Chae, Byungkee;Lim, Wansoo;Choi, Hwa Soon;Chung, Min K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.90-97
    • /
    • 2008
  • Wedged insoles are frequently used to reduce the pains caused by the knee arthritis or the foot overuse syndrome. The present study analyzed the effect of wedged rear-foot insoles on the foot pressure in walking. Three medially wedged insoles with three angles (5, 8 and 15") and three laterally wedged insoles with the same angles were made, and a flat insole were prepared. Ten healthy males in twenties walked in a specified line with each insole. Center of pressure (COP), relative vertical force and maximum force on anatomical areas were analyzed from the measured foot pressure data. At heel contact, medially wedged insoles significantly increased the pressure of the medial foot side (COP moved medially by 2-5 mm and maximum pressure of 1st metatarsal head increased by 110-120% relative to the flat insole), In contrast, laterally wedged insoles significantly increased the lateral side pressure (COP moved laterally by 1-5 mm and the ratio of $2^{nd}$ metatarsal head pressure to $1^{st}$ metatarsal head increased by 0.5-2.0 relative to the flat insole). At toe off, both wedged insoles significantly increased the pressure of the medial foot side (COP moved medially by 0.5-10 mm and the ratio of $1^{st}$ metatarsal head pressure to $5^{th}$ metatarsal head increased by 2.0 relative to the flat insole). Especially, the laterally wedged insoles significantly increased the relative vertical force (6-12%) of the rear-foot more than the flat insole.

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION (상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung Mun-Seung;Kwon Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

RELATIVE CLASS NUMBER ONE PROBLEM OF REAL QUADRATIC FIELDS AND CONTINUED FRACTION OF $\sqrt{m}$ WITH PERIOD 6

  • Lee, Jun Ho
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2021
  • Abstract. For a positive square-free integer m, let K = ℚ($\sqrt{m}$) be a real quadratic field. The relative class number Hd(f) of K of discriminant d is the ratio of class numbers 𝒪K and 𝒪f, where 𝒪K is the ring of integers of K and 𝒪f is the order of conductor f given by ℤ + f𝒪K. In 1856, Dirichlet showed that for certain m there exists an infinite number of f such that the relative class number Hd(f) is one. But it remained open as to whether there exists such an f for each m. In this paper, we give a result for existence of real quadratic field ℚ($\sqrt{m}$) with relative class number one where the period of continued fraction expansion of $\sqrt{m}$ is 6.

Effect of relative density on the shear behaviour of granulated coal ash

  • Yoshimoto, Norimasa;Wu, Yang;Hyodo, Masayuki;Nakata, Yukio
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.207-224
    • /
    • 2016
  • Granulated coal ash (GCA), a mixture of the by-product from milling processes with a small amount of cement added, has recently come to be used as a new form of geomaterial. The shear strength and deformation behaviours of GCA are greatly determined by its relative density or void ratio. A series of drained triaxial compression tests were performed on cylindrical specimens of GCA at confining pressures of between 50 kPa and 400 kPa at initial relative densities of 50%, 70% and 80%. Experimental results show that a rise in relative density increases the peak shear strength and intensifies the dilation behaviour. The initial tangent modulus and secant modulus of the stress-strain curve increase with increasing initial relative density, whereas the axial and volumetric strains at failure decrease with level of initial relative density. The stress-dilatancy relationships of GCA at different relative densities and confining pressures display similar tendency. The dilatancy behaviour of GCA is modelled by the Nova rule and the material property N in Nova rule of GCA is much larger than that of natural sand.

Regional Comparative Analysis of the Economically Active Population Ratio by Sex (남녀별 경제활동참가율의 지역별 비교분석)

  • Park, Jong T.;Jang, Hee S.
    • Journal of Service Research and Studies
    • /
    • v.4 no.1
    • /
    • pp.71-81
    • /
    • 2014
  • It is important for regional comparative analysis about economically active population ratio by sex and total economically active population ratio to a policy data of central and local government. Through the result of comparative analysis, Central and local government can use policies distinctively according to the region and keep the efficiency of detail policy application. This paper shows regional comparative analysis about economically active population ratio by sex for the Seoul metropolitan region, Gangwon region, Chungcheong region, Youngnam region, Honam region using the economically active population survey data in 16 cities and provinces. We used the survey of economically active population for 13 years from 2000 to 2012, we calculated total economically active population ratio and economically active population ratio by sex about the 5 regions. And we analyzed the relative ratio between economically active population ratio of male and female by each region, we also analyzed the results of regional comparative analysis by sex.

  • PDF

Measurement Method of Noise Correlation Matrix Using Relative Noise Ratio (상대적인 잡음비를 이용한 잡음상관행렬 측정방법)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.430-437
    • /
    • 2016
  • In general, noise measurement results show larger random ripple than those of the network analyzer. The reason for the lager random ripple of the noise measurements is considered that the general noise measurements uses absolute measured noise powers, while the network analyzer measures using a ratio of the measured powers. In this paper, a novel measurement method of noise correlation matrix using relative noise ratios is proposed. Proposed method measures the five noise powers of DUT for the five input impedance variations and the four relative noise ratios are formed using the five measured noise powers. The four noise ratios are used to compute the noise correlation matrix and noise parameters. The resulting noise parameters for a 0.5 dB attenuator show good agreements with theoretical values calculated by S-parameters. Also, the noise parameters of an active DUT with a noise figure of less than 1 dB are measured and the measured results show a small random ripple as expected and their values are physically acceptable. In conclusion, the proposed method can be applied to the noise parameter measurements for DUT with a noise figure below 1 dB.

Liquifaction Characteristics of Saemangeum Dredged Sand Depending on Relative Density (상대밀도의 변화에 따른 새만금준설토의 액상화 특성)

  • Kim, Yoo-Seong;Seo, Se-Gwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • In reclaimed loose sandy layer with dredged soil, liquefaction by the small scale earthquake coud be occurred easily. A study has been carried out to investigate the Liquefaction characteristic on Saemangeum dredged sandy soil, and compared with other results from the literature investigation. A series of undrained cyclic triaxial compression tests were performed on dredged sandy soil of Seamangeum area. The tests were performed at the three different initial relative densities(namely 30%, 50%, 70%), different cyclic stress ratio and different consolidation stress condition. The results of this study showed that cyclic stresses (${\sigma}_d$) increased linearly with increase of consolidation ratio, but the stress ratios (${\sigma}_d/2{\sigma}^{\prime}{_c}$) were almost same. The stress ratios were increased almost linearly with increase of relative density. Compared with other sandy soil, Saemangeum dredged sandy soil showed relatively weak liquifaction characteristics.

  • PDF

Three-dimensional analysis of the cusp variation patterns of mandibular second premolar in Koreans (일부 한국인 하악 제2소구치 교두 변이 양상에 대한 3차원적 분석)

  • Nam, Shin-Eun
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.220-227
    • /
    • 2020
  • Purpose: This study aims to investigate the cusp variation pattern of the Korean mandibular second premolar and to determine the difference in tooth diameter and surface area using a virtual three-dimensional model. Methods: Dental casts from 69 students were scanned as a virtual dental models with a three-dimensional dental model scanner. Tooth diameter, absolute and relative individual areas, total crown area, the number of lingual cusps and central groove pattern were analyzed using RapidForm 2004. The Mann-Whitney U-test and the Kruskal-Wallis test were performed to verify sexual dimorphism, the difference in tooth diameter and surface according to the cusp variation pattern (α=0.05). Results: There was no significant difference except in buccolingual diameter (p<0.05) and buccolingual diameter at the cervix (p<0.05). The relative surface area of the total clinical crown was 65.76% for the buccal half and 34.24% for the lingual half, with a ratio of 2:1. In the case of the presence of two lingual cusps, the ratio was 21.47% for the mesiolingual half and 14.12% for the distaolingual half, with a ratio of 3:2. The dominant central groove patterns of the second premolar were the H-pattern (42.0%), followed by the Y-pattern (37.7%), then the U-pattern (20.3%). The relative buccal half was largest in the U-pattern central groove and the relative lingual half was largest in the Y-pattern central groove (p<0.05). Conclusion: This study is significant in that it measured quantitative surface areas and the findings could be a meaningful reference to comprehend dental anatomy in Koreans.

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.